×

zbMATH — the first resource for mathematics

Uncertainty, variability, and sensitivity analysis in physiological pharmacokinetic models. (English) Zbl 0907.62127
Summary: Physiologically based pharmacokinetic (PBPK) models are now commonly used to predict the dose of toxic metabolites of chemical substances reaching target tissues. A typical PBPK model can involve 20 or more physiological, physiochemical, and biochemical parameters, each of which is estimated with some degree of error. In this article, methods for assessing the impact of uncertainty in the parameter values on prediction of tissue dose are proposed, along with methods for identifying those parameters to which predictions of tissue doses are most sensitive. Many of the model parameters are related to body weight, which is assumed to vary in accordance with a doubly truncated normal distribution. The application of the proposed methods is illustrated using a PBPK model for benzene.

MSC:
62P10 Applications of statistics to biology and medical sciences; meta analysis
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
Software:
R
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/jps.2600721003 · doi:10.1002/jps.2600721003
[2] Krishnan K, Principles and Methods of Toxicology pp 149– (1994)
[3] DOI: 10.1016/0304-3835(93)90025-5 · doi:10.1016/0304-3835(93)90025-5
[4] DOI: 10.1289/ehp.94102s1137 · doi:10.1289/ehp.94102s1137
[5] Arms AD, Travis CC: Reference physiological parameters in pharmacokinetic modeling (1988)
[6] DOI: 10.1016/0041-008X(90)90029-T · doi:10.1016/0041-008X(90)90029-T
[7] DOI: 10.1016/0041-008X(91)90291-L · doi:10.1016/0041-008X(91)90291-L
[8] DOI: 10.1111/j.1539-6924.1990.tb00528.x · doi:10.1111/j.1539-6924.1990.tb00528.x
[9] DOI: 10.1016/0272-0590(89)90290-X · doi:10.1016/0272-0590(89)90290-X
[10] DOI: 10.1016/0378-4274(89)90044-1 · doi:10.1016/0378-4274(89)90044-1
[11] Hetrick DM, J Pharmacokin Biopharm 19 pp 1– (1991) · doi:10.1007/BF01062190
[12] DOI: 10.1111/j.1539-6924.1987.tb00966.x · doi:10.1111/j.1539-6924.1987.tb00966.x
[13] DOI: 10.1111/j.1539-6924.1988.tb01155.x · doi:10.1111/j.1539-6924.1988.tb01155.x
[14] DOI: 10.1016/0167-9473(92)90155-9 · Zbl 04506819 · doi:10.1016/0167-9473(92)90155-9
[15] DOI: 10.1016/0167-9473(93)90193-W · Zbl 0875.62200 · doi:10.1016/0167-9473(93)90193-W
[16] DOI: 10.1111/j.1539-6924.1981.tb01425.x · doi:10.1111/j.1539-6924.1981.tb01425.x
[17] Guyton AC, Medical Physiology (1991)
[18] Karlson P, Introduction to Modern Biochemistry (1974)
[19] DOI: 10.2165/00003088-198611050-00004 · doi:10.2165/00003088-198611050-00004
[20] DOI: 10.1016/0041-008X(90)90037-U · doi:10.1016/0041-008X(90)90037-U
[21] Travis CC, Statistics in Toxicology pp 161– (1991)
[22] Johnson NL, Continuous Univariate Distributions. 2. Distributions in Statistics (1970)
[23] Orten IM, Human Biochemistry (1982)
[24] DOI: 10.1016/0041-008X(87)90294-8 · doi:10.1016/0041-008X(87)90294-8
[25] DOI: 10.2307/2289528 · Zbl 0719.62053 · doi:10.2307/2289528
[26] Becker AR, The New S Language: A Programming Environment for Data Analysis and Graphics (1988)
[27] Steiner EC, Reference Guide of SimuSolv Modeling and Simulation Software (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.