×

zbMATH — the first resource for mathematics

Simulation of plunging wave impact on a vertical wall. (English) Zbl 0905.76011
The paper presents a numerical study of the impact of a two-dimensional plunging wave on a rigid vertical wall using the potential flow theory. The plunging wave generated by a piston wavemaker is simulated using MEL boundary integral scheme. Initially there is an oblique impact of a liquid wedge on the wall described by a similarity solution. Simulation with a trapped air pocket against the wall is continued using MEL method with the trapped air described by a polytropic gas law. The maximum impact pressure on the wall and the scaling law for the impact involving trapped air are of much interest, and these are described using two dimensionless parameters. Simulations and direct quantitative comparisons with a tank experiment of E. S. Chan, W. K. Melville et al. [J. Fluid Mech. 189, 423-442 (1988; Zbl 0642.76020)] support the validity and utility of MEL simulations for practical predictions and the reliability of the scaling laws.

MSC:
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76N15 Gas dynamics (general theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1146/annurev.fl.20.010188.001111
[2] Koehler, J. Ship Res. 21 pp 165– (1977)
[3] DOI: 10.1016/0029-8018(91)90033-M
[4] Chan, Proc. R. Soc. Lond. 417 pp 95– (1988)
[5] Takemoto, J. Soc. Naval Arch. Japan 156 pp 306– (1984)
[6] DOI: 10.1016/0378-3839(94)90050-7
[7] Schmidt, Proc. 23rd Intl Conf. Coastal Engng ASCE, Venice 38 pp 1545– (1992)
[8] DOI: 10.1007/BF00385945 · Zbl 0487.76096
[9] DOI: 10.1016/0021-8928(59)90101-7 · Zbl 0090.40404
[10] DOI: 10.1121/1.381252
[11] DOI: 10.1016/0378-3839(84)90029-2
[12] Bagnold, J. Inst. Civ. none pp 202– (1939)
[13] Oumeraci, J. Waterway, Ports, Coastal, and Ocean Eng. 119 pp 381– (1993)
[14] DOI: 10.1016/0141-1187(84)90005-1
[15] DOI: 10.1016/0029-8018(90)90030-A
[16] Hayashi, Coastal Engng in Japan 1 pp 25– (1958)
[17] DOI: 10.1017/S002211209300028X · Zbl 0766.76008
[18] DOI: 10.1016/0378-3839(94)90049-3
[19] DOI: 10.1016/0378-3839(86)90039-6
[20] Whitman, J. Ship Res. 11 pp 38– (1973)
[21] DOI: 10.1017/S0022112088001089 · Zbl 0642.76020
[22] DOI: 10.1016/0378-3839(87)90030-5
[23] Dobrovol’skaya, J. Fluid Mech. 34 pp 805– (1969)
[24] DOI: 10.1017/S002211206000013X · Zbl 0091.18003
[25] DOI: 10.1017/S0022112095003053 · Zbl 0871.76010
[26] DOI: 10.1016/0378-3839(92)90020-U
[27] Mitsuyasu, Proc. 10th Intl Conf. Coastal Engng Tokyo vol. 3 pp 268– (1966)
[28] Miller, Proc. 14th Int. Conf. Coastal Engng vol. 3 pp 1761– (1974)
[29] Kvålsvold, J. Ship Res. 39 pp 225Р(1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.