×

zbMATH — the first resource for mathematics

Patterns of buffer overflow in a class of queues with long memory in the input stream. (English) Zbl 0905.60070
The authors consider a G/G/1/\(L\) queue with finite buffer capacity \(L\) and determine time to buffer overflow. The arrival process is produced by an on/off source with heavy tailed on-distribution. The mean time to overflow increases polynomially fast with increasing capacity \(L\), contrary to the classical case with light tales for the on-distribution. Pooling of resources in case of superposition of several such arrival processes is investigated.
Reviewer: H.Daduna (Hamburg)

MSC:
60K25 Queueing theory (aspects of probability theory)
90B15 Stochastic network models in operations research
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abate, J., Choudhury, G. and Whitt, W. (1994). Waiting-time tail probabilities in queues with long-tail service-time distributions. Queueing Sy stems Theory Appl. 16 311-338. · Zbl 0805.60097 · doi:10.1007/BF01158960
[2] Anick, D., Mitra, D. and Sondhi, M. (1982). Stochastic theory of a data-handling sy stem with multiple sources. Bell Sy stem Technical Journal 61 1871-1894.
[3] Asmussen, S. (1987). Applied Probability and Queues. Wiley, New York. · Zbl 0624.60098
[4] Asmussen, S. (1998). Subexponential asy mptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities. Ann. Appl. Probab. · Zbl 0942.60034 · doi:10.1214/aoap/1028903531
[5] Asmussen, S. and Perry, D. (1992). On cy cle maxima, first passage problems and extreme value theory for queues. Stochastic Models 8 421-458. · Zbl 0762.60086 · doi:10.1080/15326349208807233
[6] Avram, F. and Taqqu, M. S. (1986). Weak convergence of moving averages with infinite variance. In Dependence in Probability and Statistics (E. Eberlein and M. Taqqu, eds.) 399-415. Birkhäuser, Boston. · Zbl 0602.60028
[7] Avram, F. and Taqqu, M. S. (1989). Probability bounds for M-Skorohod oscillations. Stochastic Process. Appl. 33 63-72. · Zbl 0693.60005 · doi:10.1016/0304-4149(89)90066-5
[8] Avram, F. and Taqqu, M. S. (1992). Weak convergence of sums of moving averages in the -stable domain of attraction. Ann. Probab. 20 483-503. · Zbl 0747.60032 · doi:10.1214/aop/1176989938
[9] Berger, A. and Whitt, W. (1995). Maximum values in queueing processes. Probab. Engrg. Inform. Sci. 9 375-409. · Zbl 1335.60168 · doi:10.1017/S0269964800003934
[10] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[11] Bingham, N., Goldie, C. and Teugels, J. (1987). Regular variation. In Ency clopedia of Mathematics and Its Applications 27. Cambridge Univ. Press. · Zbl 0617.26001
[12] Brichet, F., Roberts, J., Simonian, A. and Veitch, D. (1996). Heavy traffic analysis of a storage model with long range dependent On/Off sources. Queueing Sy stems Theory Appl. 23 197-215. · Zbl 0879.60089 · doi:10.1007/BF01206557
[13] Choudhury, G. and Whitt, W. (1995). Long-tail buffer-content distributions in broadband networks. Preprint, AT&T Bell Laboratories, Murray Hill, NJ.
[14] Crovella, M. and Bestavros, A. (1995). Explaining World Wide Web traffic self-similarity. Preprint. (Available as TR-95-015 from crovella,best @cs.bu.edu.)
[15] Cunha, C., Bestavros, A. and Crovella, M. (1995). Characteristics of www client-based traces. Preprint. (Available as BU-CS-95-010 from crovella,best @cs.bu.edu.)
[16] Embrechts, P. and Veraverbeke, N. (1982). Estimates for the probability of ruin with special emphasis on the possibility of large claims. Insurance: Mathematics and Economics 1 55-72. · Zbl 0518.62083 · doi:10.1016/0167-6687(82)90021-X
[17] Feller, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley, New York. · Zbl 0219.60003
[18] Heath, D., Resnick, S. and Samorodnitsky, G. (1996). Heavy tails and long range dependence in on/off processes and associated fluid models. Math. Oper. Res. To appear. (Available as TR1144.ps.Z at http://www.orie.cornell.edu/trlist/trlist.html.) URL: JSTOR: links.jstor.org · Zbl 0981.60092 · doi:10.1287/moor.23.1.145 · www.orie.cornell.edu
[19] Iglehart, D. (1972). Extreme values in the GI/G/1 queue. Ann. Math. Statist. 43 627-635. · Zbl 0238.60072 · doi:10.1214/aoms/1177692642
[20] Kella, O. and Whitt, W. (1992). A storage model with a two-state random environment. Oper. Res. 40 257-262. · Zbl 0825.90344 · doi:10.1287/opre.40.3.S257
[21] Leland, W., Taqqu, M., Willinger, W. and Wilson, D. (1993). On the self-similar nature of ethernet traffic. ACM/SIGCOMM Computer Communications Review 23 183-193.
[22] Leland, W., Taqqu, M., Willinger, W. and Wilson, D. (1994). On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2 1-15.
[23] Pacheco, A. and Prabhu, N. U. (1996). A Markovian storage model. Ann. Appl. Probab. 6 76-91. · Zbl 0863.60096 · doi:10.1214/aoap/1034968066
[24] Prabhu, N. U. and Pacheco, A. (1995). A storage model for data communication sy stems. Queueing Sy stems Theory Appl. 19 1-40. · Zbl 0834.90056 · doi:10.1007/BF01148938
[25] Pratt, J. (1960). On interchanging limits and integrals. Ann. Math. Statist. 31 74-77. · Zbl 0090.26802 · doi:10.1214/aoms/1177705988
[26] Resnick, S. (1986). Point processes, regular variation and weak convergence. Adv. in Appl. Prob. 18 66-138. JSTOR: · Zbl 0597.60048 · doi:10.2307/1427239 · links.jstor.org
[27] Resnick, S. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York. · Zbl 0633.60001
[28] Resnick, S. (1992). Adventures in Stochastic Processes. Birkhäuser, Boston. · Zbl 0762.60002
[29] Willinger, W., Taqqu, M., Leland, W. and Wilson, D. (1995). Self-similarity in high-speed packet traffic: analysis and modeling of Ethernet traffic measurements. Statist. Sci. 10 67-85. · Zbl 1148.90310 · doi:10.1214/ss/1177010131
[30] Willinger, W., Taqqu, M., Sherman, R. and Wilson, D. (1995). Self-similarity through highvariability: statistical analysis of Ethernet LAN traffic at the source level.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.