×

zbMATH — the first resource for mathematics

Lattice analogues of \(W\)-algebras and classical integrable equations. (English) Zbl 0905.17032
Summary: We propose a regular way to construct lattice versions of \(W\)-algebras, both for the quantum and the classical case. In the classical case we write the algebra explicitly and derive the lattice analogue of the Boussinesq equation from the Hamiltonian equations of motion. The connection between the lattice Faddeev-Takhtadjan-Volkov algebra and the \(q\)-deformed Virasoro algebra is also discussed.

MSC:
17B68 Virasoro and related algebras
17B37 Quantum groups (quantized enveloping algebras) and related deformations
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Faddeev, L.; Takhtadjan, L., Lecture notes in physics, 246, 166, (1986)
[2] Babelon, O.; Babelon, O., Phys. lett. B, Lecture notes in mathematics, 1510, 159, (1992)
[3] Volkov, A.; Volkov, A.; Volkov, A., Zap. nauch. sem. LOMI, Zap. nauch. sem. LOMI, Theor. math. phys., 74, 135, (1988)
[4] Falceto, F.; Gawedzki, K., Lattice Wess-Zumino-Witten models and quantum groups, Ihes/p/92/73, (1992), preprint
[5] Zamolodchikov, A.; Zamolodchikov, A.; Zamolodchikov, A., JETP lett., Adv. stud. pure math., Rev. math. phys., 1, 197, (1990)
[6] Babelon, O., Phys. lett. B, 215, 523, (1988)
[7] Braden, H., Nucl. phys. B, 338, 689, (1990)
[8] Gerasimov, A.; Lebedev, D.; Morozov, A., Int. J. mod. phys. A, 6, 977, (1991)
[9] Gorsky, A.; Selivanov, K., Mod. phys. lett. A, 6, 377, (1991)
[10] Reshetikhin, N.; Semenov-Tian-Shansky, M., Lett. math. phys., 19, 133, (1990)
[11] Alekseev, A.; Faddeev, L.; Semenov-Tian-Shansky, M., Lecture notes in mathematics, 1510, 148, (1992)
[12] Belov, A.; Chaltikian, K., Q-deformations of Virasoro algebra and lattice conformal theories, Ilg-tmp-92-04, (1992), preprint · Zbl 1006.17013
[13] Fateev, V.; Lukyanov, S., Zh. eksp. teor. fiz., 94, 3, 23, (1988)
[14] Gerasimov, A.; Goméz, C.; Sierra, G., Quantum group symmetry of rational conformal field theories, Itep-91-22, Ugva-dpt-90/04-669, (1990), preprint
[15] Feigin, B., ()
[16] Chaichian, M.; Presnajder, A., Cern-th-6225/91, (1991), preprint
[17] Dickey, L., Soliton equations and Hamiltonian systems, (1991), World Scientific Singapore · Zbl 0753.35075
[18] A. Belov and K. Chaltikian, to be published.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.