×

zbMATH — the first resource for mathematics

Local polynomial estimators of the volatility function in nonparametric autoregression. (English) Zbl 0904.62047
Summary: We consider a class of dynamic models in which both the conditional mean and the conditional variance (volatility) are unknown functions of the past. We first derive probabilistic conditions under which nonparametric estimation of these functions is possible. We then construct an estimator based on local polynomial fitting. We examine the rates of convergence of these estimators and give a result on their asymptotic normality. The local polynomial fitting of the volatility function is applied to different foreign exchange rate series. We find an asymmetric \(U\)-shaped ‘smiling face’ form of the volatility function.

MSC:
62G07 Density estimation
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62P20 Applications of statistics to economics
Software:
XploRe
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Nze, P. Ango: Critères d’ergodicité de quelques modèles à représentation markovienne. Comptes rendus des seances de l’academie des sciences Paris 315, 1301-1304 (1992) · Zbl 0761.60062
[2] Bossaerts, P.; Härdle, W.: Foreign exchange-rates have suprising volatility. SFB 373 discussion paper (1995)
[3] Chan, K. S.; Tong, H.: On the use of deterministic Lyapunov functions for the ergodicity of stochastic difference equations. Advances in applied probability 17, 666-678 (1985) · Zbl 0573.60056
[4] Chen, R.; Tsay, R. S.: Nonlinear additive ARX models. Journal of the American statistical association 88, 955-967 (1993)
[5] Chen, R.; Tsay, R. S.: Functional-coefficient autoregressive models. Journal of the American statistical association 88, 298-308 (1993) · Zbl 0776.62066
[6] Cleveland, W. S.: Robust locally weighted regression and smoothing scatterplots. Jasa 74, 829-836 (1979) · Zbl 0423.62029
[7] Collomb: Propriétés de convergence presque complète du prédicteur à noyau. Zeitschrift für wahrscheinlichkeitstheorie und verwandte gebiete 66, 441-460 (1984) · Zbl 0525.62046
[8] Davydov, Yu.A.: Mixing conditions for Markov chains. Theory of probability and its applications 18, 312-328 (1973) · Zbl 0297.60031
[9] Diebolt, J.; Guégan, D.: Probabilistic properties of the general nonlinear autoregressive process of order one. Technical report \(N{\deg}\)128 (1990)
[10] Doukhan, P.; Ghindés, M.: Estimation dans le processus xn+1 = $int(Xn)+{\epsilon}\(n+1. Comptes rendus des seances de l'academie des sciences Paris, s\'er. A 297, 61-64 (1980)\)
[11] Doukhan, P.; Ghindès, M.: Processus autorégressifs non-linéaires. Comptes rendus des seances de l’academie des sciences Paris, sér. A 290, 921-923 (1981)
[12] Doukhan, P.; Tsybakov, A. B.: Nonparametric robust estimation in nonlinear ARX models. Problems of information transmission 29, 24-34 (1993) · Zbl 0804.62041
[13] Engle, R. F.: Autoregressive conditional heteroscedasticity with estimates of the variance of UK inflation. Econometrica 50, 987-1008 (1982) · Zbl 0491.62099
[14] Engle, R. F.; Gonzales-Rivera, G.: Semiparametric ARCH models. U.C.S.D. discussion paper (1989)
[15] Engle, R. F.; Granger, W. J.; Rice, J.; Weiss, A.: Semiparametric estimates of the relation between weather and electricity sales. Journal of the American statistical association 81, 310-320 (1986)
[16] Fan, J.; Gijbels, I.: Local polynomial modelling. (1996) · Zbl 0873.62037
[17] Gouriéroux, Ch.; Monfort, A.: Qualitative threshold ARCH models. Journal of econometrics 52, 159-199 (1992) · Zbl 0792.62103
[18] Gregory, A. W.: A nonparametric test for autoregressive conditional heteroscedasticity: a Markov chain approach. Journal of business and economic statistics 7, 107-115 (1989)
[19] Härdle, W.; Klinke, S.; Turlach, B.: Xplore – an interactive statistical computing environment. (1995) · Zbl 0826.62001
[20] Katkovnik, V. Ya.: Linear and nonlinear methods of nonparametric regression analysis. Automatika, 35-46 (1979) · Zbl 0423.62048
[21] Katkovnik, V. Ya.: Nonparametric identification and data smoothing. (1985) · Zbl 0576.62050
[22] Lipster, R. Sh.; Shirjaev, A. N.: A functional central limit theorem for martingales. Theory of probability and its applications 25, 667-688 (1980)
[23] Lütkepohl, H.: Introduction to multiple time series analysis. (1992)
[24] Mckeague, I. W.; Zhang, M. J.: Identification of nonlinear time series from first order cumulative characteristics. Annals of statistics 22, 495-514 (1994) · Zbl 0797.62073
[25] Mokkadem, A.: Sur un modèle autorégressif nonlinéaire. Ergodicité et ergodicité géometrique. Journal of time series analysis 8, 195-204 (1987) · Zbl 0621.60076
[26] Müller, H. G.: Nonparametric regression analysis of longitudinal data. Springer lecture notes in statistics 46 (1988) · Zbl 0664.62031
[27] Nummelin, E.; Tuominen, P.: Geometric ergodicity of harris-recurrent Markov chains with application to renewal theory. Stochastic processes and their applications 12, 187-202 (1982) · Zbl 0484.60056
[28] Robinson, P. M.: Nonparametric estimators for time series. J. time series analysis 4, 185-207 (1983) · Zbl 0544.62082
[29] Robinson, P. M.: Robust nonparametric autoregression. Robust and nonlinear time series analysis (1984) · Zbl 0573.62037
[30] Stone, C. J.: Consistent nonparametric regression. Ann. statist. 5, 595-645 (1977) · Zbl 0366.62051
[31] Tong, H.: Threshold models in nonlinear time series analysis. Lecture notes in statistics 21 (1983) · Zbl 0527.62083
[32] Tweedie, R. L.: Sufficient conditions for ergodicity and geometric ergodicity of Markov chains on a general state space. Stochastic process and their applications 3, 385-403 (1975) · Zbl 0315.60035
[33] Tsybakov, A. B.: Robust reconstruction of functions by the local-approximation method. Problems of information transmission 22, 133-146 (1986) · Zbl 0622.62047
[34] Vieu, P.: Order choice in nonlinear autoregressive models. Discussion paper (1995) · Zbl 0836.62067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.