Diffusion approximation and hyperbolic automorphisms of the torus. (English) Zbl 0902.35088

The goal of the present paper is to give an example of a reversible dynamics which after some appropriate scaling leads to an irreversible limit dynamics. In particular, the authors want to present such an example that allows for a complete and elementary analysis, without appeal to sophisticated tools from ergodic theory. The examples presented are hyperbolic automorphisms \(T\) of the torus, and for simplicity, they work with the two-dimensional torus and Arnold’s cat map. It is proven that a suitably scaled process converges weakly to a diffusion.
Reviewer: A.Bovier (Berlin)


35Q35 PDEs in connection with fluid mechanics
82C40 Kinetic theory of gases in time-dependent statistical mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics
60J60 Diffusion processes
Full Text: DOI


[1] Bardos, C.; Golse, F.; Levermore, D., J. stat. phys., 63, 323-344, (1991)
[2] Bardos, C.; Golse, F.; Levermore, D., Commun. pure appl. math., 46, 667-753, (1993)
[3] Bardos, C.; Ukai, S., Math. methods and models in the appl. sci., 1, 235-257, (1991)
[4] Bowen, R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, () · Zbl 0308.28010
[5] Bunimovich, L.; Sinai, Ya., Commun. math. phys., 78, 247-280, (1980)
[6] Bunimovich, L.; Sinai, Ya., Commun. math. phys., 78, 479-497, (1980)
[7] Bunimovich, L.; Sinai, Ya.; Chernov, N., Russian math. surveys, 45, 105-152, (1990)
[8] Bunimovich, L.; Sinai, Ya.; Chernov, N., Russian math. surveys, 46, 4, 47-106, (1991)
[9] Caflisch, R., Commun. pure appl. math., 33, 651-666, (1980)
[10] Cercignani, C.; Illner, R.; Pulvirenti, M., The mathematical theory of dilute gases, (1994), Springer New York · Zbl 0813.76001
[11] Crawford, J.; Cary, J., Physica D, 6, 223-232, (1982-1983)
[12] Dautray, R., Méthodes probabilistes pour LES équations de la physique, (1989), Masson Paris
[13] De Masi, A.; Esposito, R.; Lebowitz, J., Commun. pure appl. math., 42, 1189-1214, (1990)
[14] Denker, M.; Philipp, W., Ergodic theory and dyn. syst., 4, 541-552, (1984)
[15] Dunford, N.; Schwartz, J., Linear operators, part I: general theory, (1958), Interscience New York
[16] Garrett, A., (), 45-75
[17] Illner, R.; Pulvirenti, M.; Illner, R.; Pulvirenti, M., Commun. math. phys., Commun. math. phys., 121, 143-146, (1989)
[18] Katznelson, Y., Israel J. math., 10, 186-195, (1971)
[19] Lanford, O., ()
[20] Lebowitz, J., Physica A, 194, 1-27, (1993)
[21] Ratner, M., Israel J. math., 16, 181-197, (1973)
[22] Babovski, H., Limit theorems for deterministic Knudsen flows between two plates, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.