×

zbMATH — the first resource for mathematics

String theory and black holes. (English) Zbl 0900.53037
Summary: An exact conformal field theory describing a black hole in two-dimensional spacetime is found as an \(\text{SL}(2,{\mathbf R})/\text{U}(1)\) gauged Wess-Zumino-Witten model. For \(k=\frac 94\), the conformal field theory can be regarded as a classical solution of the same system that is probed in the \(c=1\) matrix model. The conformal field theory govering the spacetime is regular at the Riemannian singularity, but it appears that generic perturbations blow up there. It is argued that the end point of the Hawking black hole evaporation is the standard spacetime of the \(c=1\) matrix model, which should be regarded as an analogue of the extremee Reissner-Nordström black hole of four-dimensional general relativity. The \(c=1\) model is thus a model of the quantum mechanics of matter interacting with a black hole.

MSC:
53Z05 Applications of differential geometry to physics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T20 Quantum field theory on curved space or space-time backgrounds
81V17 Gravitational interaction in quantum theory
83C57 Black holes
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. Bardakci, Phys. Rev. D 3 pp 2493– (1971)
[2] P. Goddard, Phys. Lett. 152B pp 88– (1985) · Zbl 0661.17015
[3] L. J. Dixon, Nucl. Phys. B325 pp 329– (1989)
[4] I. Bars, Nucl. Phys. B348 pp 89– (1991)
[5] I. Bars, Nucl. Phys. B334 pp 125– (1990)
[6] O. F. Hernandez, Phys. Lett. B 233 pp 355– (1989) · Zbl 1332.81215
[7] E. Guadagnini, Phys. Lett. B 191 pp 69– (1987)
[8] K. Bardakci, Nucl. Phys. B299 pp 151– (1988) · Zbl 0661.17018
[9] A. Altschuler, Commun. Math. Phys. 118 pp 241– (1988) · Zbl 0661.17019
[10] D. Karabali, Phys. Lett. B 216 pp 307– (1989)
[11] H. J. Schnitzer, Nucl. Phys. B324 pp 412– (1989)
[12] D. Karabali, Nucl. Phys. B329 pp 649– (1990)
[13] K. Gawedski, Phys. Lett. B 215 pp 119– (1988)
[14] K. Gawedski, Nucl. Phys. B320 pp 625– (1989)
[15] C. G. Callan, Jr., Nucl. Phys. B311 pp 673– (1988)
[16] G. W. Gibbons, Nucl. Phys. B298 pp 741– (1988)
[17] D. Garfinkle, Phys. Rev. D 43 pp 3140– (1991)
[18] Y. Kazama, Nucl. Phys. B321 pp 232– (1989)
[19] J. Polchinski, Nucl. Phys. B346 pp 253– (1990)
[20] S. R. Das, Mod. Phys. Lett. A 5 pp 799– (1990) · Zbl 1020.81822
[21] V. A. Kazakov, Nucl. Phys. B311 pp 171– (1988) · Zbl 1232.81045
[22] E. Brezin, Nucl. Phys. B338 pp 673– (1990)
[23] D. J. Gross, Nucl. Phys. B238 pp 217– (1990)
[24] P. Ginsparg, Phys. Lett. B 240 pp 333– (1990)
[25] A. M. Polyakov, Mod. Phys. Lett. A 2 pp 893– (1987)
[26] P. Forgacs, Phys. Lett. B 227 pp 214– (1989)
[27] L. O’Raifeartaigh, Phys. Lett. B 251 pp 361– (1990)
[28] M. Bershadsky, Commun. Math. Phys. 126 pp 49– (1989) · Zbl 0689.17015
[29] J. Wess, Phys. Lett. 37B pp 95– (1971)
[30] E. Witten, Commun. Math. Phys. 92 pp 455– (1984) · Zbl 0536.58012
[31] J. Balog, Nucl. Phys. B325 pp 325– (1989)
[32] T. H. Buscher, Phys. Lett. B 201 pp 466– (1988)
[33] C. G. Callan, Jr., Nucl. Phys. B262 pp 593– (1985)
[34] A. Chodos, Nucl. Phys. B23 pp 509– (1974)
[35] J. Hartle, Phys. Rev. D 13 pp 2188– (1976)
[36] E. Witten, Commun. Math. Phys. 117 pp 353– (1988) · Zbl 0656.53078
[37] S. Hawking, Commun. Math. Phys. 43 pp 199– (1975) · Zbl 1378.83040
[38] D. J. Gross, Nucl. Phys. B350 pp 621– (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.