×

zbMATH — the first resource for mathematics

A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems. (English) Zbl 0899.76259
Summary: A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations is presented for the analysis of free surface flows, moving spatial configurations and deforming fluid-structure interfaces. The variational equation is based on the time discontinuous Galerkin method employing the physical entropy variables. The space-time elements are oriented in time to accommodate the spatial deformations. If the elements are oriented along the particle paths, the formulation is Lagrangian, and if they are fixed in time, it is Eulerian. Consequently, this formulation is analogous to the arbitrary Lagrangian-Eulerian technique. A novel mesh rezoning strategy is presented to orient the elements in time and adapt the fluid mesh to the changing spatial configuration. Numerical results are presented to show the performance of the method.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acrivos, A.; Leal, L.G.; Snowden, D.S.; Pan, F., Further experiments on steady separated flows past bluff objects, J. fluid mech., 34, 25-48, (1968)
[2] Aliabadi, S.K.; Tezduyar, T.E., Space-time finite element computation of compressible flows involving moving boundaries and interfaces, Comput. methods appl. mech. engrg., 107, 209-223, (1993) · Zbl 0798.76037
[3] Behr, M.; Johnson, A.A.; Kennedy, J.; Mittal, S.; Tezduyar, T.E., Computation of incompressible flows with implicit finite element implementations on the connection machine, Comput. methods appl. mech. engrg., 108, 99-118, (1993) · Zbl 0784.76046
[4] Behr, M.; Tezduyar, T.E., Finite element solution strategies for large-scale flow simulations, Comput. methods appl. mech. engrg., 112, 3-24, (1994) · Zbl 0846.76041
[5] Belytschko, T.; Kennedy, J.M.; Schoeberie, D.F., Quasi-Eulerian finite element formulation for fluid-structure interaction, ASME J. pressure vessel technol., 102, 62-69, (1980)
[6] Brackbill, J.U.; Saltzman, J.S., Adaptive zoning for singular problems in two dimensions, J. comput. phys., 46, 342-368, (1982) · Zbl 0489.76007
[7] Brooks, A.N.; Hughes, T.J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 32, 199-259, (1982) · Zbl 0497.76041
[8] Chalot, F.; Hughes, T.J.R.; Shakib, F., Symmetrization of conservation laws with entropy for high-temperature hypersonic computations, Comput. syst. engrg., 1, 495-521, (1990)
[9] Chen, J.S.; Liu, W.K.; Belytschko, T., Arbitrary Lagrangian-Eulerian methods for materials with memory and friction, ()
[10] Donea, J., Arbitrary Lagrangian-Eulerian finite element methods, (), 473-516
[11] Donea, J.; Fasoli-Stella, P.; Giuliani, S., Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems, ()
[12] Donea, J.; Giuliani, S.; Halleux, J.P., An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions, Comput. methods appl. mech. engrg., 33, 689-723, (1982) · Zbl 0508.73063
[13] R.M. Ferencz and T.J.R. Hughes, Iterative Finite Element Solutions in Nonlinear Solid Mechanics, in: P.G. Ciarlet and J.L. Lions, eds., Handbook of Numerical Analysis, Vol. V: Numerical Methods for Solids (Elsevier, Amsterdam), in press. · Zbl 0930.74058
[14] Franca, L.P.; Hughes, T.J.R., Two classes of mixed finite element methods, Comput. methods appl. mech. engrg., 69, 89-129, (1988) · Zbl 0651.65078
[15] Glowinski, R.; Tallec, P.L., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM studies in applied mathematics, (1989), Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania
[16] Grove, A.S.; Shair, F.H.; Petersen, E.E.; Acrivos, A., An experimental investigation of the steady separated flow past a circular cylinder, J. fluid mech., 19, 60-80, (1964) · Zbl 0117.42506
[17] Hansbo, P., The characteristic streamline diffusion method for the time-independent incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 99, 171-186, (1992) · Zbl 0825.76423
[18] Hansbo, P.; Szepessy, A., A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equations, Comput. methods appl. mech. engrg., 84, 175-192, (1990) · Zbl 0716.76048
[19] Hughes, T.J.R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Int. J. numer. methods engrg., 7, 1261-1275, (1987) · Zbl 0638.76080
[20] Hughes, T.J.R., The finite element method: linear static and dynamic finite element analysis, (1987), Prentice-Hall Englewood Cliffs, NJ
[21] Hughes, T.J.R.; Brooks, A.N., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[22] Hughes, T.J.R.; Franca, L.P., A new finite element formulation for computational fluid dynamics: VII. the Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. methods appl. mech. engrg., 65, 85-96, (1987) · Zbl 0635.76067
[23] Hughes, T.J.R.; Franca, L.P.; Balestra, M., A new finite element formulation for computational fluid dynamics: V. circumventing the babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations, Comput. methods appl. mech. engrg., 59, 85-99, (1986) · Zbl 0622.76077
[24] Hughes, T.J.R.; Franca, L.P.; Hulbert, G.M., A new finite element formulation for computational fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive equations, Comput. methods appl. mech. engrg., 73, 173-189, (1989) · Zbl 0697.76100
[25] Hughes, T.J.R.; Franca, L.P.; Mallet, M., A new finite element formulation for computational fluid dynamics: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics, Comput. methods appl. mech. engrg., 54, 223-234, (1986) · Zbl 0572.76068
[26] Hughes, T.J.R.; Hulbert, G.M., Space-time finite element methods for elastodynamics: formulations and error estimates, Comput. methods appl. mech. engrg., 66, 339-363, (1988) · Zbl 0616.73063
[27] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: III. the generalized streamline operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075
[28] Hughes, T.J.R.; Liu, W.K.; Zimmerman, T.K., Lagrangian-Eulerian finte element formulation for incompressible viscous flows, Comput. methods appl. mech. engrg., 29, 329-349, (1984)
[29] Hulbert, G.M.; Hughes, T.J.R., Space-time finite element methods for second-order hyperbolic equations, Comput. methods appl. mech. engrg., 84, 327-348, (1990) · Zbl 0754.73085
[30] Jansen, K.; Shakib, F.; Hughes, T.J.R., Fast projection algorithm for unstructured meshes, ()
[31] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. comput., 47, 1-18, (1986) · Zbl 0609.76020
[32] Johnson, C.; Szepessy, A.; Hansbo, P., On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws, Math. comput., 54, 107-129, (1990) · Zbl 0685.65086
[33] Johnson, A.A.; Tezduyar, T.E., Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. methods appl. mech. engrg., 119, 73-94, (1994) · Zbl 0848.76036
[34] Liu, W.K.; Chang, H.; Chen, J.; Belytschko, T., Arbitrary Lagrangian-Eulerian Petrov-Galerkin finite elements for nonlinear continua, Comput. methods appl. mech. engrg., 68, 259-310, (1988) · Zbl 0626.73076
[35] Liu, W.K.; Ma, D.C., Coupling effect between liquid sloshing and flexible fluid-filled systems, Nucl. engrg. des., 72, 345-357, (1982)
[36] Mallet, M., A finite element method for computational fluid dynamics, ()
[37] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1983), Prentice-Hall Englewood Cliffs, NJ · Zbl 0545.73031
[38] Masud, A., A space-time finite element method for fluid-structure interaction, ()
[39] Mittal, S.; Tezduyar, T.E., Massively parallel finite element computation of incompressible flows involving fluid-body interactions, Comput. methods appl. mech. engrg., 112, 253-282, (1994) · Zbl 0846.76048
[40] Ramaswamy, B.; Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow, Int. J. numer. methods engrg., 7, 1053-1075, (1987) · Zbl 0634.76033
[41] Shakib, F.; Hughes, T.J.R.; Johan, Z., A multi-element group preconditioned GMRES algorithm for nonsymmetric systems arising in finite element analysis, Comput. methods appl. mech. engrg., 75, 415-465, (1989) · Zbl 0687.76065
[42] Shakib, F.; Hughes, T.J.R.; Johan, Z., A new finite element formulation for computational fluid dynamics: X. the compressible Euler and Navier-Stokes equations, Comput. methods appl. mech. engrg., 89, 141-219, (1991) · Zbl 0838.76040
[43] Soulaimani, A.; Fortin, M.; Dhatt, G.; Quellet, Y., Finite element simulation of two- and three-dimensional free surface flows, Comput. methods appl. mech. engrg., 86, 265-296, (1991) · Zbl 0761.76037
[44] Tezduyar, T.E.; Aliabadi, S.K.; Behr, M.; Mittal, S., Massively parallel finite element simulation of compressible and incompressible flows, Comput. methods appl. mech. engrg., 119, 157-177, (1994) · Zbl 0848.76040
[45] Tezduyar, T.E.; Behr, M.; Mittal, S.; Johnson, A.A., Computation of unsteady incompressible flows with the stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementation, ()
[46] Tezduyar, T.E.; Liou, J.; Behr, M., A new strategy for finite element computations involving moving boundaries and interfaces—the DSD/ST procedure: I. the concept and the preliminary numerical tests, Comput. methods appl. mech. engrg., 94, 339-351, (1992) · Zbl 0745.76044
[47] Tezduyar, T.E.; Liou, J.; Behr, M., A new strategy for finite element computations involving moving boundaries and interfaces—the DSD/ST procedure: II. computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. methods appl. mech. engrg., 94, 353-371, (1992) · Zbl 0745.76045
[48] Winslow, A.M., Equipotential zoning of two-dimensional meshes, university of California, Lawrence radiation laboratory report, UCRL-7312, (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.