×

zbMATH — the first resource for mathematics

Fundamental variational equations of discontinuous thermompiezoelectric fields. (English) Zbl 0899.73452
Summary: To describe the physical behavior of a thermopiezoelectric medium, the fundamental equations are expressed as the Euler-Lagrange equations of certain variational principles. The variational principles are deduced frm a general principle of continuum physics (e.g. the principle of virtual work) by modifying it through an involutory (Legendre’s or Friedrich’s) transformation. They are shown to generate all the divergence and gradient equations, the constitutive relations and the mixed-boundary and jump conditions for the medium with or without a fixed, internal surface of discontinuity.

MSC:
74F15 Electromagnetic effects in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mason, W.P., Crystal physics of interaction processes, (1966), Academic Press New York
[2] Mindlin, R.D., (), 282-290
[3] Lanczos, C., The variational principles of mechanics, (1960), University of Toronto Press Toronto · Zbl 0138.19705
[4] Mikhlin, S.G., Variational methods in mathematical physics, (1964), Macmillan New York · Zbl 0119.19002
[5] Cario, L.; Kahan, T., Variational techniques in electromagnetism, (1965), Gordon and Breach New York
[6] Jin, J.M., The finite element method in electromagnetics, (1993), Wiley New York · Zbl 0823.65124
[7] Zhou, P.B., Numerical analysis of electromagnetic fields, (1963), Springer New York
[8] Vainberg, M.M., Variational methods for the study of nonlinear operators, (1964), Holden-Day San Francisco · Zbl 0122.35501
[9] Gurtin, M.E., (), 1-295
[10] Vekovishcheva, I.A.; Vekovishcheva, I.A., Sov. appl. mechs., Prikl. mekh., 7, 129, (1971)
[11] Tiersten, H.F.; Mindlin, R.D., Q. appl. math., 20, 107, (1962)
[12] Eernisse, E.P., IEEE trans. sonics ultrason., SU-14, 153, (1967)
[13] Eernisse, E.P.; Holland, R., IEEE trans. sonics ultrason., SU-15, 119, (1968)
[14] Dökmeci, M.C., L. II. nuovo cimento, 7, 449, (1973)
[15] Dökmeci, M.C., J. math. phys., 19, 109, (1978)
[16] Dökmeci, M.C., Int. engng sci., 18, 431, (1980)
[17] Mol’kov, V.A., Mech. solids, 27, 102, (1992)
[18] Tiersten, H.F., (), 1523
[19] Tiersten, H.F., Linear piezoelectric plate vibrations, (1969), Plenum Press New York · Zbl 0534.73083
[20] Nowacki, W., J. thermal stresses, 1, 171, (1978)
[21] Nowacki, W., Theory of asymmetric elasticity, (1968), Pergamon Press New York
[22] Chandrasekharaiah, D.S., J. thermal stresses, 7, 293, (1984)
[23] Hailan, Z., Chin. J. acoust., 4, 223, (1985)
[24] Dökmeci, M.C., (), 203-208, in Russian
[25] Dökmeci, M.C., IEEE trans. ultrason. ferroelec. freq. contr., UFFC-35, 775, (1988)
[26] Dökmeci, M.C., IEEE trans. ultrason. ferrolec. freq. contr., UFFC-37, 369, (1990)
[27] Sandhu, R.S.; Pister, K.S., Int. J. solids struct., 7, 639, (1971)
[28] Buchanan, G.R., Comput. mech., 2, 163, (1987)
[29] Blot, M.A., J. appl. phys., 27, 240, (1956)
[30] Mindlin, R.D., Int. J. solids struct., 10, 625, (1974)
[31] Oden, J.T.; Reddy, J.N., Variational methods in theoretical mechanics, (1976), Springer Berlin · Zbl 0324.73001
[32] Finlayson, B.A., The method of weighted residuals and variational principles, (1972), Academic Press New York · Zbl 0319.49020
[33] Finlayson, B.A.; Scriven, L.E., Int. J. heat mass transfer., 10, 799, (1967)
[34] Washizu, K., Variational methods in elasticity and plasticity, (1982), Pergamon Press New York · Zbl 0164.26001
[35] Holland, R.; Eernisse, E.P., ()
[36] Mikhailov, G.K.; Parton, V.Z., ()
[37] Dökmeci, M.C., A dynamic analysis of piezoelectric strained elements, (June 1992), U.S.A.R.D.S.G F.R
[38] Mindlin, R.D., Theory of beams and plates. lecture notes at columbia university, New York, (1968)
[39] Toupin, R.A., J. rational mech. anal., 5, 849, (1956)
[40] Schouten, J.A., Tensor analysis for physicists, (1951), Oxford University Press London · Zbl 0044.38302
[41] Kellogg, O.D., Foundations of potential theory, (1946), F. Ungar New York · Zbl 0053.07301
[42] Venkataraman, G.; Feldkamp, L.A.; Sahni, V.C., Dynamics of perfect crystals, (1975), M.I.T. Press Cambridge, MA
[43] Fichera, G., (), 347-389
[44] Daher, N.; Maugin, G.A., Acta mech., 60, 217, (1986)
[45] Biot, M.A., (), 1-91
[46] Batra, G., J. elasticity, 21, 131, (1989)
[47] Truesdell, C.; Toupin, R.A., (), 226-793
[48] (), 295-319
[49] Friedrichs, K.O., Math. phys., 1, 13, (1929)
[50] Morse, P.M.; Feshbach, H., Methods of theoretical physics, (1953), McGraw-Hill New York, Part II · Zbl 0051.40603
[51] Rosen, P., J. appl. phys., 25, 336, (1954)
[52] Biot, M.A., Variational principles in heat transfer: A unified Lagrangian analysis of dissipative phenomena, (1970), Clarendon Press London · Zbl 0191.39402
[53] Courant, R.; Hilbert, D., ()
[54] Dökmeci, M.C., Meccanica, 8, 252, (1973)
[55] Altay, G.; Dökmeci, M.C., On variational principles for thermopiezoelectric discontinuous fields, Tübi̇itak/eee-ag, tr., (July 1994)
[56] Tiersten, H.F., J. math. phys., 9, 1445, (1968)
[57] Chen, G., Int. J. engng sci., 28, 875, (1990)
[58] Simkins, T.E., Aiaa j., 16, 559, (1978)
[59] Wu, J.W.; Simkins, T.E., J. sound vibr., 72, 491, (1980)
[60] Wu, J.J., J. sound vibr., 53, 341, (1977)
[61] Harrington, R.F., Harmonic elecgromagnetic fields, (1961), McGraw-Hill New York
[62] Chien, W.-Z., (), 93-153
[63] Boley, B.A.; Weiner, J.H., Theory of thermal stresses, (1967), Wiley New York
[64] Aşkar, G.A.; Dökmeci, M.C., J. acoust. soc. am., 95, 3007, (1994)
[65] Penfield, P., Phys. fluids, 9, 1184, (1966) · Zbl 0144.46502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.