×

zbMATH — the first resource for mathematics

Stationary solutions of nonlinear stochastic evolution equations. (English) Zbl 0899.60056
Summary: General theorems concerning the existence and uniqueness of invariant measures are proved for a certain class of regular diffusion processes in separable Banach spaces under some weak compactness and other conditions. Then, based on these theorems, some verifiable sufficient conditions are obtained to ensure the existence and uniqueness of an invariant distribution for the strong solution to some nonlinear evolution equations in a Hilbert space. The results are applied to certain monotone parabolic Itô equations as well as to the 2-D Navier-Stokes equations under random perturbations.

MSC:
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BF02097100 · Zbl 0702.76041 · doi:10.1007/BF02097100
[2] DOI: 10.1016/0022-1236(73)90045-1 · Zbl 0265.60094 · doi:10.1016/0022-1236(73)90045-1
[3] Chow P.L., Research Notes in Math. Series 310 pp 42– (1994)
[4] DOI: 10.1007/BF01199588 · Zbl 0799.60053 · doi:10.1007/BF01199588
[5] DOI: 10.1017/CBO9780511666223 · doi:10.1017/CBO9780511666223
[6] Fladoli F., Erdogicity of the 2-D Navier-Stokes equation under random perturbations
[7] Gihman I.I., Stochastic Differential Equations (1972) · Zbl 0242.60003 · doi:10.1007/978-3-642-88264-7
[8] Gihman I.I., The Theory of Stochastic Processes 1 (1974) · Zbl 0291.60019
[9] Ichikawa A., Stochastics 12 pp 1– (1984)
[10] Khasminskii R.Z., Stochastic Stability of Differential Equations · Zbl 0855.93090
[11] Krylov N.V., On Lp-theory of stochastic partial differential equations in the whole space (1994)
[12] Lions J.L., Equations Différentielles Operationelles et Probléms aux Limites (1961)
[13] Marcus R., Trans. Amer. Math. Soc 198 pp 177– (1974)
[14] DOI: 10.1016/0022-1236(78)90031-9 · Zbl 0397.47034 · doi:10.1016/0022-1236(78)90031-9
[15] DOI: 10.1080/17442508908833585 · Zbl 0683.60037 · doi:10.1080/17442508908833585
[16] Maslowski, B. 1993. ”Stability of semilinear equations with boundary and point-wise noise”. Inst. Math., Czech. Acad. Sci. Report 86
[17] Pardoux E., Thesis (1975)
[18] Pardoux E., Stochastics 3 pp 127– (1979) · Zbl 0424.60067 · doi:10.1080/17442507908833142
[19] Peszat S., Strong Feller property and irreducibility for diffusions on Hilbert spaces. (1995) · Zbl 0831.60083
[20] Stroock D.W., Multidimensional Diffusion Processes (1979)
[21] Viot M., Thesis (1976)
[22] Vishik M.J., Mathematical Problems in Statistical Hydromechanics (1988) · Zbl 0688.35077 · doi:10.1007/978-94-009-1423-0
[23] Walsh J.B., Lectures Notes in Mathemetics 1180 pp 265– (1984)
[24] Yosida K., Functional Analysis (1968) · Zbl 0152.32102 · doi:10.1007/978-3-662-11791-0
[25] Zabczyk J., Mathematical Control Theory 14 pp 591– (1985) · Zbl 0591.60050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.