×

zbMATH — the first resource for mathematics

Regularity results for anisotropic image segmentation models. (English) Zbl 0899.49018
The paper is concerned with existence of minimizing pairs \((u,K)\) for the generalized Mumford-Shah functional \[ \int_{\Omega\setminus K}F(\nabla u)+\alpha(u-g)^2 dx +\beta{\mathcal H}^{n-1}(K\cap\Omega). \] The idea of the proof is to estabilish a density lower bound \[ {\mathcal H}^{n-1}(S_u\cap B_\rho(x))\geq\theta\rho^{n-1} \qquad\forall x\in \overline{S}_u,\quad B_\rho(x)\subset \Omega, \] for minimizers \(u\) of the weak formulation of the problem in the space of special functions with bounded variation. The density lower bound implies that \({\mathcal H}^{n-1}(\Omega\cap\overline{S}_u\setminus S_u)=0\), and hence that \((u,\overline{S}_u)\) is a minimizing pair. The proof of the density lower bound is related to the rate of decay in \(\rho\) of the energy \[ \int_{B_\rho(x)}F(\nabla v(y)) dy \] for local minimizers \(v\) of \(\int F(\nabla v)\) in a Sobolev space. A general decay property is proved under a strict convexity assumption on \(F\) (no smoothness is required). By a perturbation argument, also some existence results in the vectorial problem are presented.
Reviewer: L.Ambrosio (Pavia)

MSC:
49N60 Regularity of solutions in optimal control
49J10 Existence theories for free problems in two or more independent variables
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] L. Ambrosio , A compactness theorem for a new class of functions of bounded variation , Boll. Un. Mat. Ital. B 3 ( 1989 ), 857 - 881 . MR 1032614 | Zbl 0767.49001 · Zbl 0767.49001
[2] L. Ambrosio , A new proof of the SB V compactness theorem , Calc. Var. Partial Differential Equations 3 ( 1995 ), 127 - 137 . MR 1384840 | Zbl 0837.49011 · Zbl 0837.49011
[3] L. Ambrosio - N. Fusco - D. Pallara , Partial regularity offree discontinuity sets II , Ann. Scuola Norm. Sup. Pisa Cl. Sci . ( 4 ) 24 ( 1997 ), 39 - 62 . Numdam | MR 1475772 | Zbl 0896.49024 · Zbl 0896.49024
[4] L. Ambrosio - D. Pallara , Partial regularity of free discontinuity sets I , Ann. Scuola Norm. Sup. Pisa Cl. Sci . 24 ( 1997 ), 1 - 38 . Numdam | MR 1475771 | Zbl 0896.49023 · Zbl 0896.49023
[5] A. Blake - A. Zisserman , Visual Reconstruction , M.I.T. Press , 1987 . MR 919733
[6] M. Carrieri - A. Leaci , Sk-valued maps minimizing the LP norm of the gradient withfree discontinuities , Ann. Scuola. Norm. Sup. Pisa Cl. Sci. 18 ( 1991 ), 321 - 352 . Numdam | MR 1145314 | Zbl 0753.49018 · Zbl 0753.49018
[7] G. Dal Maso - J.-M. Morel - S. Solimini , A variational method in image segmentation : existence and approximation results , Acta Math . 168 ( 1992 ), 89 - 151 . MR 1149865 | Zbl 0772.49006 · Zbl 0772.49006
[8] G. David - S. Semmes , On the singular set of minimizers of the Mumford-Shah functional , J. Math. Pures Appl ., to appear. Zbl 0853.49010 · Zbl 0853.49010
[9] E. De Giorgi , Free Discontinuity Problems in the Calculus of Variations, a collection of papers dedicated to J. L. Lions on the occasion of his 60th birthday , North Holland (R. Dautray ed.), 1991 . MR 1110593 | Zbl 0758.49002 · Zbl 0758.49002
[10] E. De Giorgi - L. Ambrosio , Un nuovo tipo difunzionale del calcolo delle variazioni , Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur . 82 ( 1988 ), 199 - 210 . MR 1152641 | Zbl 0715.49014 · Zbl 0715.49014
[11] E. De Giorgi - M. Carriero - A. Leaci , Existence theorem for a minimum problem with free discontinuity set , Arch. Rat. Mech. Anal. 108 ( 1989 ), 195 - 218 . MR 1012174 | Zbl 0682.49002 · Zbl 0682.49002
[12] E. Di Benedetto , C1,\alpha local regularity of weak solutions of degenerate elliptic equations , Nonlinear Anal. 7 ( 1983 ), 827 - 850 . Zbl 0539.35027 · Zbl 0539.35027
[13] H . Federer , Geometric Measure Theory , Springer , New York , 1969 . MR 257325 | Zbl 0176.00801 · Zbl 0176.00801
[14] I. Fonseca - G. Francofort , Relaxation in B V versus quasiconvexification in W1,p; a model for the interaction between fracture and damage , Calc. Var. Partial Differential Equations 3 ( 1995 ), 407 - 446 . MR 1385294 | Zbl 0847.73077 · Zbl 0847.73077
[15] M. Giaquinta - G. Modica , Remarks on the regularity of certain degenerate functionals , Manuscripta Math. 57 ( 1986 ), 55 - 99 . Article | MR 866406 | Zbl 0607.49003 · Zbl 0607.49003
[16] J. Manfredi , Regularity for minima of functionals with p-growth, J . Differential Equations 76 ( 1988 ), 203 - 212 . MR 969420 | Zbl 0674.35008 · Zbl 0674.35008
[17] J.-M. Morel - S. Solimini , Variational Methods in Image Segmentation , Birkhäuser , Boston , 1995 . MR 1321598
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.