×

zbMATH — the first resource for mathematics

Tetrahedral mesh improvement using swapping and smoothing. (English) Zbl 0897.65075
An algorithm for the improvement of 3D tetrahedral meshes is presented. The objective is to remove tetrahedrons with too small or too large angles. In order to achieve this changes in the connectivity of the grid and a smoothing technique for the vertices of the grid are applied.
This smoothing technique is formulated as a nonsmooth optimization problem and solved by an analogue of the steepest gradient method for smooth functions.
Several numerical results are presented and discussed, among those also the combination of the optimization technique with Laplacian smoothing [cf. D. A. Field, Commun. Appl. Numer. Methods 4, No. 6, 709–712 (1988; Zbl 0664.65107)].

MSC:
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Software:
ADIC; ANSLib; PLTMG
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babuska, SIAM J. Numer. Anal. 13 pp 214– (1976) · Zbl 0324.65046 · doi:10.1137/0713021
[2] Fried, AIAA J. 10 pp 219– (1972) · Zbl 0242.65046 · doi:10.2514/3.6561
[3] and , ’Refinement algorithms and data structures for regular local mesh refinement’, in et al. (eds.), Scientific Computing, IMACS/North-Holland, Amsterdam, 1983, pp. 3-17.
[4] Ollivier-Gooch, AIAA J. 33 pp 1822– (1995) · Zbl 0856.76064 · doi:10.2514/3.12733
[5] Rivara, SIAM J. Numer. Anal. 21 pp 604– (1984) · Zbl 0574.65133 · doi:10.1137/0721042
[6] and , ’Optimization of tetrahedral meshes’, in , , , and (eds.), Modeling, Mesh Generation and Adaptive Numerical Methods for Partial Differential Equations, Springer, Berlin, 1995, pp. 97-127. · doi:10.1007/978-1-4612-4248-2_6
[7] and , ’Incremental topological flipping works for regular triangulations’, in Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 43-52.
[8] Joe, SIAM J. Scientific Statist. Comput. 10 pp 718– (1989) · Zbl 0681.65087 · doi:10.1137/0910044
[9] Joe, SIAM J. Scientific Computing 16 pp 1292– (1995) · Zbl 0851.65081 · doi:10.1137/0916075
[10] Amezua, Adv. Engng. Software 22 pp 45– (1995) · doi:10.1016/0965-9978(95)00004-G
[11] Canann, Finite Elements Anal. Des. 13 pp 185– (1993) · Zbl 0816.65089 · doi:10.1016/0168-874X(93)90056-V
[12] Parthasarathy, J. Finite Elements Anal. Des. 9 pp 309– (1991) · Zbl 0850.73326 · doi:10.1016/0168-874X(91)90004-I
[13] Field, Commun. Appl. Numer. Meth. 4 pp 709– (1988) · Zbl 0664.65107 · doi:10.1002/cnm.1630040603
[14] Lawson, Comput. Aided Geometric Des. 3 pp 231– (1986) · Zbl 0624.65018 · doi:10.1016/0167-8396(86)90001-4
[15] Lo, Int. J. Numer. Meth. Engng. 21 pp 1403– (1985) · Zbl 0587.65081 · doi:10.1002/nme.1620210805
[16] and , ’An efficient parallel algorithm for mesh smoothing’, in Proc. 4th Int. Meshing Roundtable, Sandia National Laboratories, 1995, pp. 47-58.
[17] Charalambous, SIAM J. Numer. Anal. 15 pp 162– (1978) · Zbl 0384.65032 · doi:10.1137/0715011
[18] and , ’ADIC–An extensible automatic differentiation tool for ANSI-C’, Preprint ANL/MCS-P626-1196, Argonne National Laboratory, Mathematics and Computer Sciences Division, 1996.
[19] and , ’Optimal point placement for mesh smoothing’, in 8th ACM-SIAM Symp. on Discrete Algorithms, New Orleans, 1997, pp. 528-537. · Zbl 1321.68427
[20] PLTMG: A Software Package for Solving Ellipitc Partial Differential Equations, Users’ Guide 7.0, Frontiers in Applied Mathematics, Vol. 15, SIAM, Philadelphia, 1994.
[21] Shephard, Int. J. Numer. Meth. Engng. 32 pp 709– (1991) · Zbl 0755.65116 · doi:10.1002/nme.1620320406
[22] Bank, SIAM J. Numer. Anal.
[23] Jones, Comput. Systems Engng. 5 pp 297– (1994) · doi:10.1016/0956-0521(94)90013-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.