×

Parameter identification for finite deformation elasto-plasticity in principal directions. (English) Zbl 0896.73024

Summary: This work is concerned with identification of material parameters based on experimental data, which represent nonuniform distributions of stresses and deformations within the volume of the specimen. Both elastic and inelastic material nonlinearities in the frame of a finite deformation theory are taken into account. Gradient-based descent methods are used for minimization of a least-squares function. To this end, a sensitivity analysis is performed, and the resulting expressions are presented in a spatial and a material setting. In particular, the cases of an isotropic hyperelastic model and a multiplicative plasticity model with an exponential type integration scheme, both formulated in principal directions, are considered. Two numerical examples, based on simulated data and experimental data obtained by a grating method, demonstrate the versatility of our approach.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74C20 Large-strain, rate-dependent theories of plasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lemaitre, J.; Chaboche, J. L., Mechanics of Solid Materials (1990), Cambridge University Press: Cambridge University Press Cambridge
[2] (Miller, A. K., Unified Constitutive Equations for Creep and Plasticity (1987), Elsevier Applied Science: Elsevier Applied Science London, New York)
[3] Banks, H. T.; Kunisch, K., Estimation Techniques for Distributed Parameter Systems (1989), Birkha¨user: Birkha¨user Boston · Zbl 0695.93020
[4] Bui, H. D., Inverse Problems in the Mechanics of Materials, An Introduction (1994), CRC Press: CRC Press Boca Raton, London
[5] (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[6] Mu¨ller, D.; Hartmann, G., Identification of material parameters for inelastic constitutive models using principles of biologic evolution, J. Engrg. Mater. Tech. (ASME), 111, 299-305 (1989)
[7] Mahnken, R.; Stein, E., Gradient-based methods for parameter identification of viscoplastic materials, (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[8] Mahnken, R.; Stein, E., Parameter identification of viscoplastic models based on analytical derivatives of a least-squares functional and stability investigations, Int. J. Plast., 12, 4, 451-479 (1996) · Zbl 0883.73028
[9] Kocks, U. F., Kinematics of nonuniform deformation, Progress in Material Science, Chalmers Anniversary Volume (1981)
[10] Ghouati, O.; Gelin, J. C., An inverse method for material parameter estimation in the inelastic range, Comput. Mech., 16, 3, 143-151 (1995) · Zbl 0841.73023
[11] Gavrus, A.; Massoni, E.; Chenot, J. L., Computer aided Rheology for non linear large strain thermo-viscoplastic behavior formulated as an inverse problem, (Bui, H. D.; Tanaka, M., Inverse Problems in Engineering Mechanics (1994), Balkema: Balkema Rotterdam)
[12] Mahnken, R.; Stein, E., The parameter-identification for visco-plastic models via finite-element-methods and gradientmethods, Modell. Simul. Mater. Sci. Engrg., 2, 597-616 (1994)
[13] Mahnken, R.; Stein, E., A unified approach for parameter identification of inelastic material models in the frame of the finite element method, Comput. Methods Appl. Mech. Engrg., 136, 225-258 (1996) · Zbl 0921.73143
[14] Adelmann, H. M.; Haftka, R., Sensitivity analysis of discrete structural systems, AIAA J., 24, 823-832 (1986)
[15] Vidal, C.; Haber, R. B., Design sensitivity for rate-independent elastoplasticity, Comput. Methods Appl. Mech. Engrg., 107, 393-431 (1993) · Zbl 0798.73076
[16] Barthold, F. J.B., Theorie und Numerik zur Berechnung und Optimierung von Strukturen aus isotropen, hyperelastischen Materialien, (Dissertation, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universita¨t Hannover, F 93/2 (1993))
[17] Haug, E. J.; Choi, K. K.; Komkov, V., Design Sensitivity Analysis of Structural Systems (1986), Academic Press: Academic Press Baltimore and London · Zbl 0618.73106
[18] Vidal, C. A.; Lee, H.-S.; Haber, R. B., The consistent tangent operator for design sensitivity analysis of history-dependent response, Comput. Syst. Engrg., 2, 509-523 (1991)
[19] Haber, R. B., Application of the Eulerian Lagrangian kinematic description to structural shape optimization, (Proc. NATO Advanced Study Institute on Computer-Aided Optimal Design (1986)), 297-307
[20] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-104 (1992) · Zbl 0764.73088
[21] Simo, J. C., Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Comput. Methods Appl. Mech. Engrg., 99, 61-112 (1992) · Zbl 0764.73089
[22] Simo, J. C.; Taylor, R. L., Quasi-incompressible finite elasticity in principle stretches. Continuum basis and numerical algorithms, Comput. Methods Appl. Mech. Engrg., 85, 273-310 (1991) · Zbl 0764.73104
[23] Simo, J. C.; Armero, F., Geometrically nonlinear enhanced strain mixed method and the method of compatible modes, Int. J. Numer. Methods Engrg, 33, 1413-1449 (1992) · Zbl 0768.73082
[24] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1994), Dover Publications, Inc.,: Dover Publications, Inc., New York
[25] Mahnken, R., Theoretische und numerische Aspekte zur Modellierung und Parameteridentifikation bei metallischen Werkstoffen, Habilitation (1997), Institut fur Baumechanik und numerische Mechanik, Universita¨t Hannover
[26] Luenberger, D. G., Linear and Nonlinear Programming (1984), Addison-Wesley: Addison-Wesley Reading · Zbl 0241.90052
[27] Dennis, J. E.; Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations (1983), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0579.65058
[28] Hughes, T. J.R., The Finite Element Method (1988), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0651.65078
[29] Steinmann, P.; Betsch, P.; Stein, E., FE plane stress analysis incorporating arbitrary 3D large strain constitutive models (1995), submitted
[30] Bertsekas, D. P., Projected Newton methods for optimization problems with simple constraints, SIAM J. Con. Opt., 20, 2, 221-246 (1982) · Zbl 0507.49018
[31] Mahnken, R., Duale Verfahren fur nichtlineare Optimierungsprobleme in der Strukturmechanik, (Dissertation, Forschungsund Seminarberichte aus dem Bereich der Mechanik der Universita¨t Hannover, F 92/3 (1992)) · Zbl 0810.73042
[32] Powell, M. J.D., A fast algorithm for nonlinear constrained optimization calculations. Numerical analysis, (Watson, G. A., Proc. of the Biennial Conference held. Proc. of the Biennial Conference held, Dundee, June 1977. Proc. of the Biennial Conference held. Proc. of the Biennial Conference held, Dundee, June 1977, Springer Lecture Notes in Mathematics, 630 (1977), Springer: Springer Berlin) · Zbl 0374.65032
[33] Andresen, K.; Hu¨bner, B., Calculation of strain from an object grating on a Reseau film by a correlation method, Exp. Mech., 32, 96-101 (1992)
[34] Bergmann, D.; Galanulis, K.; Ritter, R., Optical field methods for 3D deformation measurement in fracture mechanics, (Proc. IUTAM-Symposium on Size-Scale Effects in the Failure Mechanics of Materials and Structure (Oct. 3-7, 1994), Politecnico Torino), accepted for publication
[35] Miehe, C., Computation of Isotropic Tensor Functions, Commun. Appl. Numer. Methods, 9, 89-896 (1993) · Zbl 0796.65059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.