# zbMATH — the first resource for mathematics

A stabilized finite point method for analysis of fluid mechanics problems. (English) Zbl 0894.76065
Summary: A meshless procedure termed ‘the finite point method’ for solving convection-diffusion and fluid flow type problems is presented. The method is based on the use of a weighted least-square interpolation procedure together with point collocation for evaluating the approximation integrals. Special emphasis is given to the stabilization of the convective terms and the Neumann boundary condition which has been found to be essential to obtain accurate results. Some examples of application to diffusive and convective transport and to compressible flow problems using quadratic finite point interpolations are presented.

##### MSC:
 76M25 Other numerical methods (fluid mechanics) (MSC2010) 76R99 Diffusion and convection
Full Text:
##### References:
 [1] Zienkiewicz, O.C.; Taylor, R.L.; Zienkiewicz, O.C.; Taylor, R.L., () [2] Zienkiewicz, O.C.; Oñate, E., Finite elements versus unite volumes. Is there a choice?, () · Zbl 0442.73075 [3] Oñate, E.; Cervera, M.; Zienkiewicz, O.C., A finite volume format for structural mechanics, Int. J. numer. methods engrg., 37, 181-201, (1994) · Zbl 0795.73079 [4] Idelsohn, S.; Oñate, E., Finite element and finite volumes. two good friends, Int. J. numer. methods engrg., 37, 3323-3341, (1994) · Zbl 0813.76041 [5] Forsythe, G.E.; Wasow, W.R., Finite difference methods for partial differential equations, (1960), Wiley New York · Zbl 0099.11103 [6] Perrone, N.; Kao, R., A general finite difference method for arbitrary meshes, Comput. struct., 5, 45-47, (1975) [7] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. struct., 11, 83-95, (1980) · Zbl 0427.73077 [8] Liszka, T., An interpolation method for an irregular set of nodes, Int. J. numer. methods engrg., 20, 1594-1612, (1984) · Zbl 0544.65006 [9] Moraghan, J.J., An introduction to SPH, Comput. phys. comm., 48, 89-96, (1988) · Zbl 0673.76089 [10] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the FEM: diffuse approximation and diffuse elements, Comput. mech., 10, 307-318, (1992) · Zbl 0764.65068 [11] Belytschko, T.; Lu, Y.; Gu, L., Element free Galerkin methods, Int. J. numer. methods engrg., 37, 229-256, (1994) · Zbl 0796.73077 [12] Lu, Y.Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. methods appl. mech. engrg., 113, 397-414, (1994) · Zbl 0847.73064 [13] Duarte, C.A.; Oden, J.T., Hp clouds—A meshless method to solve boundary-value problems, TICAM report 95-05, (May 1995) [14] Babuška, I.; Melenk, J.M., The partition of unity finite element method, () · Zbl 0949.65117 [15] Taylor, R.L.; Zienkiewicz, O.C.; Idelsohn, S.; Oñate, E., Moving least square approximations for solution of differential equations, () · Zbl 0894.76065 [16] Liu, W.K.; Jun, S.; Zhang, Y.F., Reproducing kernel particle methods, Int. J. numer. methods fluids, 20, 1081-1106, (1995) · Zbl 0881.76072 [17] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods engrg., 38, 1655-1679, (1995) · Zbl 0840.73078 [18] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-933, (1995) · Zbl 0885.76078 [19] Liu, W.K.; Chen, Y.; Jun, S.; Chen, J.S.; Belytschko, T.; Pan, C.; Uras, R.A.; Chang, C.T., Overview and applications of the reproducing kernel particle methods, Archives comput. methods engrg., 3, 1, 3-80, (1996) [20] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C., Finite point methods in computational mechanics, () · Zbl 0884.76068 [21] Oñate, E.; Idelsohn, S.; Zienkiewicz, O.C.; Fisher, T., A finite point method for analysis of fluid flow problems, () · Zbl 0894.76065 [22] E. Oñate, S. Idelsohn, O.C. Zienkiewicz and R.L. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int. J. Numer. Methods Engrg., to be published. · Zbl 0884.76068 [23] Fisher, T.; Idelsohn, S.; Oñate, E., A meshless method for analysis of high speed flows, () [24] Batina, J., A gridless Euler/Navier-Stokes solution algorithm for complex airfraft applications, Aiaa 93-0333, (January 11-14, 1993), Reno NV [25] Oñate, E., On the stabilization of numerical solution of convective transport and fluid flow problems, () [26] Peraire, J.; Peiro, J.; Formaggia, L.; Morgan, K.; Zienkiewicz, O.C., Finite element Euler computations in three dimensions, Int. J. numer. methods engrg., 26, 2135-2159, (1988) · Zbl 0665.76073 [27] Hughes, T.J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics. III: the generalized streamline operator for multidimensional advective-diffusive systems, Comput. methods appl. mech. engrg., 58, 305-328, (1986) · Zbl 0622.76075 [28] Zienkiewicz, O.C.; Codina, R., A general algorithm for compressible and incompressible flow. part I: the split characteristic based scheme, Int. J. numer. methods fluids, 869-885, (1995) · Zbl 0837.76043 [29] Zienkiewicz, O.C.; Morgan, K.; Sai, B.V.K.Satya; Codina, R.; Vazquez, M., A general algorithm for compressible and incompressible flow. part II: tests on the explicit form, Int. J. numer. methods fluids, 20, 8-9, 886-913, (1995) · Zbl 0837.76044 [30] Hirsch, C., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.