×

zbMATH — the first resource for mathematics

Qualitative and quantitative simulation: bridging the gap. (English) Zbl 0894.68173
Summary: Shortcomings of qualitative simulation and of quantitative simulation motivate combining them to do simulations exhibiting strengths of both. The resulting class of techniques is called semi-quantitative simulation. One approach to semi-quantitative simulation is to use numeric intervals to represent incomplete quantitative information. In this research we demonstrate semi-quantitative simulation using intervals in an implemented semi-quantitative simulator called Q3. Q3 progressively refines a qualitative simulation, providing increasingly specific quantitative predictions which can converge to a numerical simulation in the limit while retaining important correctness guarantees from qualitative and interval simulation techniques. Q3’s simulations are based on a technique we call step size refinement. While a pure qualitative simulation has a very coarse step size, representing the state of a system trajectory at relatively few qualitatively distinct states, Q3 interpolates newly explicit states between distinct qualitative states, thereby representing more states which instantiate new constraints, leading to improved quantitative inferences. Q3’s techniques have been used for prediction, measurement interpretation, diagnosis, and even analysis of the probabilities of qualitative behaviors. Because Q3 shares important expressive and inferential properties of both qualitative and quantitative simulation, Q3 helps to bridge the gap between qualitative and quantitative simulation.

MSC:
68U20 Simulation (MSC2010)
Software:
DYNAMO; Pascal-SC
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abelson, H.; Sussman, G.J., ()
[2] Alefeld, G.; Herzberger, J., ()
[3] Allen, J.F., Maintaining knowledge about temporal intervals, Comm. ACM, 26, 11, 832-843, (1983) · Zbl 0519.68079
[4] Asaithambi, N.S.; Zuhe, S.; Moore, R.E., On computing the range of values, Computing, 28, 225-237, (1982) · Zbl 0473.65004
[5] Berleant, D., A unified representation for numerical and qualitative simulations, Appl. computing review, 3, 1, 23-26, (1995)
[6] Berleant, D., Automatically erified reasoning with both intervals and probability density functions, Interval computations, 2, 48-70, (1993) · Zbl 0829.65141
[7] Berleant, D., The use of partial quantitative information with qualitative reasoning, ()
[8] Berleant, D.; Chandra, C.; Bognæs, K.; Liaw, C.; Sheng, L.; Ch’ng, J.; Berleant, D.; Chandra, C.; Bognæs, K.; Liaw, C.; Sheng, L.; Ch’ng, J., Probabilities of qualitative behaviors for dependability analysis of a fault tolerance model, (), 883-889, preliminary results in:
[9] Berleant, D.; Kuipers, B.J., Qualitative-numeric simulation with Q3, (), 3-16
[10] (), Artificial intelligence, 24, (1984), reprinted from: · Zbl 0598.68056
[11] Bohlender, G.; Ullrich, C.; von Gudenberg, J.; Rall, L.B., ()
[12] Boltyanskii, V.C., ()
[13] Bonarini, A.; Maniezzo, V.; Bonarini, A.; Maniezzo, V.; Bonarini, A.; Maniezzo, V., Integrating qualitative and quantitative modeling, (), 4, 1, 290-297, (1991), also in:
[14] Bonissone, P.P.; Bonissone, P.P., A fuzzy sets based linguistic approach: theory and applications, (), 99-111, also in: · Zbl 1140.68497
[15] Bonissone, P.P.; Decker, K.S., Selecting uncertainty calculi and granularity: an experiment in trading off precision and complexity, (), 217-247
[16] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. comput., 31, 138, 333-390, (1977) · Zbl 0373.65054
[17] Briggs, W.L., ()
[18] Brooks, R.A., Symbolic reasoning among 3-D models and 2-D images, Artificial intelligence, 17, 285-348, (1981)
[19] Bryant, R.E., MOSS1M: a switch-level simulator for MOS LSI, (), 786-790
[20] Chawla, B.R.; Gummel, H.K.; Kozak, P., MOTIS—an MOS timing simulator, IEEE trans. circuits and systems, 22, 12, 901-910, (1975)
[21] (), 313-321
[22] Coiera, E.W., Qualitative superposition, Artificial intelligence, 56, 2-3, 171-196, (1992) · Zbl 0764.34007
[23] Cornelius, H.; Lohner, R., Computing the range of values of real functions with accuracy higher than second order, Computing, 33, 331-347, (1984) · Zbl 0556.65037
[24] Molle, D.T.Dalle, Qualitative simulation of dynamic chemical processes, (), reprinted as:
[25] Molle, D.T.Dalle; Edgar, T.F., Qualitative modeling of chemical reaction systems, ()
[26] D’Ambrosio, B., Extending the mathematics in qualitative process theory, (), 595-599
[27] Davis, E., Constraint propagation with interval labels, Artificial intelligence, 32, 3, 281-331, (1987) · Zbl 0642.68176
[28] Dean, T.L.; Boddy, M., Reasoning about partially ordered events, Artificial intelligence, 36, 3, 375-399, (1988) · Zbl 0688.68083
[29] DeCoste, D.; DeCoste, D., Dynamic across-time measurement interpretation, (), 51, 1-3, 373-379, (1991), also in:
[30] de Kleer, J., Qualitative and quantitative knowledge in classical mechanics, ()
[31] Derrick, W.; Grossman, S., ()
[32] DiCesare, F.; Sahnoun, Z.; Bonissone, P.P., Linguistic summarization of fuzzy data, Inform. sci., 52, 141-152, (1990) · Zbl 0723.68086
[33] Dubois, D.; Prade, H., Fuzzy arithmetic in qualitative reasoning, () · Zbl 0682.68090
[34] Dubois, D.; Prade, H., Operations on fuzzy numbers, Internat. J. systems sci., 9, 6, (1978) · Zbl 0383.94045
[35] Dvorak, D., Model-based monitoring of dynamic systems, (), 1238-1243
[36] Dvorak, D., Monitoring and diagnosis of continuous dynamic systems using semiquantitative simulation, ()
[37] Eijgenraam, P., ()
[38] Faltings, B.; Struss, P., ()
[39] Farquhar, A.; Brajnik, G., A semi-quantitative physics compiler, ()
[40] Fishwick, P.A., Fuzzy simulation: specifying and identifying qualitative models, Internat. J. general systems, 19, 295-316, (1991)
[41] Forbus, K.D., Qualitative process theory, (), 24, (1984), reprinted in:
[42] Forbus, K.D., Interpreting measurements of physical systems, (), 113-117
[43] Forbus, K.D.; Falkenhainer, B.; Forbus, K.D.; Falkenhainer, B., Self-explanatory simulations: an integration of qualitative and quantitative knowledge, (), 380-387, also in:
[44] Forbus, K.D.; Falkenhainer, B., Self-explanatory simulations: scaling up to large models, ()
[45] Forrester, J.W., ()
[46] Gear, W., ()
[47] Hamscher, W., Modelling digital circuits for troubleshooting, Artificial intelligence, 51, 1-3, 223-271, (1991)
[48] Henrici, P., ()
[49] Hyvönen, E., Constraint reasoning based on interval arithmetic: the tolerance propagation approach, Artificial intelligence, 58, 1-3, 71-112, (1992) · Zbl 0782.68102
[50] Kaufmann, A.; Gupta, M., ()
[51] Kautz, H.A.; Ladkin, P.B., Integrating metric and qualitative temporal reasoning, (), 241-246
[52] Kay, H., Refining imprecise models and their behaviors, ()
[53] Kay, H.; Kuipers, B.J., Numerical behavior envelopes for qualitative models, (), 606-613
[54] Kelley, G.T.; Glasgow, J.I.; Ellis, R.E., Extracting qualitative descriptions from quantitative models, (), 298-305
[55] Kiang, Y., Exploration of qualitative reasoning and its applications to management, ()
[56] Kolev, L.V.; Mladenov, V.M.; Vladov, S.S., Interval mathematics algorithms for tolerance analysis, IEEE trans. circuits and systems, 35, 8, 967-975, (1988) · Zbl 0664.65061
[57] Kuipers, B.J., ()
[58] Kuipers, B.J., Qualitative simulation, Artificial intelligence, 32, 57-95, (1986)
[59] Kuipers, B.J.; Berleant, D., Using incomplete quantitative knowledge in qualitative reasoning, (), 324-329
[60] Lohner, R.J., Enclosing the solutions of ordinary initial and boundary value problems, (), 255-286
[61] Mackworth, A.K.; Freuder, E.C., The complexity of some polynomial network consistency algorithms for constraint satisfaction problems, Artificial intelligence, 25, 65-74, (1985)
[62] McDermott, D.; Davis, E., Planning routes through uncertain territory, Artificial intelligence, 22, 107-156, (1984)
[63] Meiri, I., Combining qualitative and quantitative constraints in temporal reasoning, (), 260-267
[64] Missier, A.; Travé-Massuyès, L., Temporal information in qualitative simulation, (), 298-305
[65] Mohammed, J.; Simmons, R., Qualitative simulation of semiconductor fabrication, (), 794-799
[66] Moore, R.E., ()
[67] Nishida, T.; Doshita, S., Reasoning about global behavior of ordinary differential equations by combining qualitative and quantitative analysis, (), 98-107
[68] Nordvik, J.-P.; Smets, P.; Magrez, P., Fuzzy qualitative modeling, () · Zbl 0672.03010
[69] W. Older and A. Vellino, Constraint arithmetic on real intervals, in: F. Benhamou and A. Colmerauer, eds., Constraint Logic Programming, Collected Papers (MIT Press, Cambridge, MA).
[70] Press, W.; Flannery, B.; Teukolsky, S.; Vetterling, W., ()
[71] Sacks, E., Hierarchical reasoning about inequalities, (), 649-654
[72] Sacks, E., Automatic analysis of one-parameter planar ordinary differential equations by intelligent numerical simulation, Artificial intelligence, 48, 27-56, (1991) · Zbl 0714.65068
[73] Sacks, E.; Sacks, E., (), SIGART bull., 3, 3, 18-19, (1992), Review of K. Yip
[74] Saleh, R.A.; Newton, A.R., ()
[75] Shen, Q.; Leitch, R., Fuzzy qualitative simulation, IEEE trans. systems man cybernet., 23, 1038-1061, (1993)
[76] Shen, Q.; Leitch, R., Integrating common-sense and qualitative simulation by the use of fuzzy sets, (), 83-100
[77] Simmons, R., The use of qualitative and quantitative simulations, (), 364-368
[78] Simmons, R., “commonsense” arithmetic reasoning, (), 118-124
[79] Simmons, R., A theory of debugging plans and interpretations, (), 94-99
[80] Simmons, R., The roles of associational and causal reasoning in problem solving, Artificial intelligence, 53, 1-2, 159-207, (1992) · Zbl 1193.68229
[81] Simmons, R.; Davis, R., Generate, test and debug: combining associational rules and causal models, (), 1071-1078
[82] Siskind, J.M.; McAllester, D.A., Nondeterministic lisp as a substrate for constraint logic programming, ()
[83] Terman, C.J., RSIM—a logic-level timing simulator, (), 437-440
[84] Tong, R.M.; Bonissone, P.P., Linguistic decision analysis using fuzzy sets, () · Zbl 0538.90003
[85] Tufte, E.R., ()
[86] Vescovi, M.; Farquhar, A.; Iwasaki, Y., Numerical interval simulation: bounding behaviors of systems, ()
[87] Williams, B.C., Doing time: putting qualitative reasoning on firmer ground, (), 105-112
[88] Williams, B.C., MINIMA: a symbolic approach to qualitative algebraic reasoning, (), 264-269
[89] Williams, B.C., A theory of interactions: unifying qualitative and quantitative algebraic reasoning, Artificial intelligence, 51, 1-3, 39-94, (1991) · Zbl 0753.68084
[90] Yip, K., ()
[91] Young, D.M., Stability (h → 0 and h>0) for systems, course notes supplement 78.6, (), 566-573, Center for Numerical Analysis, University of Texas at Austin (1978)
[92] Young, D.M.; Gregory, R.T., ()
[93] Zhao, F.; Zhao, F., Extracting and representing qualitative behaviors of complex systems in phase spaces, (), 69, 51-92, (1994), also in: · Zbl 0810.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.