×

zbMATH — the first resource for mathematics

A numerical method using upwind schemes for the resolution of two-phase flows. (English) Zbl 0893.76052
Summary: This work is devoted to the numerical approximation of two-fluid flow models described by six balance equations. We introduce an original splitting technique which is especially derived to allow a straightforward extension to various and detailed exchange source terms. When based on suitable kinetic upwind schemes, the whole scheme preserves the positivity of all the thermodynamic variables under a fairly unrestrictive CFL like condition. Several stiff numerical tests, including phase separation, are displayed in order to highlight the efficiency of the method.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
Software:
HLLE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] K. El Amine, 1997, Thèse de Doctorat de l’Université Paris, VI
[2] El Amine, K.; Rascle, P., Ecoulement diphasique, modélisation et hyperbolicité, Rapport interne, EDF HT-13/96/004, (1996)
[3] Dal Maso, G.; Le Floch, P.; Murat, F., Definition and weak stability of nonconservative products, J. math. pures appl., 74, 483, (1995) · Zbl 0853.35068
[4] Ghidaglia, J.M.; Kumbaro, A.; Le Coq, G., Une méthode volumes finis à flux caractéristiques pour la résolution numérique des systèmes hyperboliques de lois de conservation, C. R. acad. sci. Paris Sér, 322, 981, (1996) · Zbl 0849.65076
[5] Godlewski, E.; Raviart, P.-A., Hyperbolic systems of conservation laws, Ellipses math. appl., 3/4, (1990) · Zbl 1063.65080
[6] Godlewski, E.; Raviart, P.-A., Numerical approximation of hyperbolic systems of conservation laws, Amer. math. soc., 118, (1996), Springer-Verlag New York
[7] Harten, A.; Lax, P.D.; Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM rev., 25, 35, (1983) · Zbl 0565.65051
[8] Hewitt, G.F.; Delhaye, J.M.; Zuber, N., Multiphase science and technology, 5, (1990), Hemisphere Washington, DC/New York
[9] Ishii, M., Thermo-fluid dynamic theory of two-phase flow, (1975), Eyrolles Paris · Zbl 0325.76135
[10] Lahey, R.T.; Drew, D.A., The three dimensional time and volume averaged conservation equations of two-phase flow, Adv. nuc. sci. technol., 20, 1, (1988)
[11] Osher, S.; Tadmor, E., On the convergence of difference approximations to scalar conservation laws, Math. comp., 181, 19, (1988) · Zbl 0637.65091
[12] Perthame, B., Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions, SIAM J. numer. anal., 29, 1, (1992) · Zbl 0744.76088
[13] Ransom, V.H., Numerical benchmark tests, Multiphase science and technology, 3, (1987), Hemisphere Washington
[14] V. H. Ransom, V. Mousseau, 1991, Convergence and accuracy of the Relap5 two-phase flow model, Proceedings ANS International Topical Meeting on Advances in Mathematics, Computations and Reactor Physics, Pittsburgh, PA, 1991
[15] Roe, P.L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. comput. phys., 43, 357, (1981) · Zbl 0474.65066
[16] L. Sainsaulieu, 1995, Contribution à la modélisation mathématique et numérique des écoulements diphasiques constitués d’un nuage de particules dans un écoulement de gaz, VI, Université Paris
[17] Shieh, A.S.-L.; Krishnamurthy, R.; Ransom, V.H., Stability, accuracy, and convergence of the numerical methods in RELAP5/MOD3, Nucl. sci. eng., 116, 227, (1994)
[18] H. Städtke, G. Franchello, B. Worth, 1994, Numerical simulation of multidimensional two-phase flow based on hyperbolic flow equations, 30th Meeting of the European Two-phase Flow Group Piacenza, June 6-8, 1994, Italy
[19] Stewart, H.B.; Wendroff, B., Two-phase flow: models and methods, J. comput. phys., 56, 363, (1984) · Zbl 0596.76103
[20] Toumi, I., A weak formulation of Roe’s approximate Riemann solver, J. comput. phys., 102, 360, (1992) · Zbl 0783.65068
[21] Toumi, I., An upwind numerical method for a six equation two-phase flow model, Rapport, DMT/94/168, SERMA/LETR/94/1619, (1994)
[22] Trapp, J.A.; Riemke, R.A., A nearly-implicit hydrodynamic numerical scheme for two-phase flows, J. comput. phys., 66, 62, (1986) · Zbl 0622.76110
[23] Wallis, G.B., One-dimensional two-phase flow, (1969), McGraw-Hill New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.