×

zbMATH — the first resource for mathematics

Numerical prediction of two-phase flow in bubble columns. (English) Zbl 0892.76083
Summary: A numerical model is described for the prediction of turbulent continuum equations for two-phase gas-liquid flows in bubble columns. The mathematical formulation is based on the solution of each phase. The two-phase model incorporates interfacial models of momentum transfer to account for the effects of virtual mass, lift, drag and pressure discontinuities at the gas-liquid interface. Turbulence is represented by means of a two-equation \(k\)-\(\varepsilon\) model modified to account for bubble-induced turbulence production. The numerical discretization is based on a staggered finite-volume approach, and the coupled equations are solved in a segregated manner using the IPSA method. The model is implemented in the multipurpose PHOENICS computer code. Two bubble column geometries are calculated and compared with the measured circulation patterns and void fraction distributions.

MSC:
76T99 Multiphase and multicomponent flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Torvik, Chem. Eng. Sci. 45 pp 2325– (1990) · doi:10.1016/0009-2509(90)80112-R
[2] Svendsen, Chem. Eng. Sci. 47 pp 3297– (1992) · doi:10.1016/0009-2509(92)85038-D
[3] and , ’Numerical simulation of liquid circulation in a bubbly column’, in Numerical Methods for Multiphase Flows, FED Vol. 91, ASME, New York, 1990, p. 19.
[4] ’Modelisation numerique d’ecoulements diphasiques a bulles dans de reacteurs chimiques’, Ph.D. Thesis, Universit√© Claude Bernard, Lyon, 1989.
[5] ’Etude experimentale et numerique des ecoulements diphasiques dans les reacteurs chimiques’, Ph.D. Thesis, Universit√© Claude Bernard, Lyon, 1992.
[6] Harlow, J. Comput. Phys. 17 pp 19– (1975) · Zbl 0297.76079 · doi:10.1016/0021-9991(75)90061-3
[7] ’The calculation of free-convection phenomena in gas-liquid mixtures’, in and (eds), Turbulent Buoyant Convection, Hemisphere, Washington, DC, 1977, p. 569.
[8] ’Numerical computation of multiphase flow and heat transfer’, in and (eds), Recent Advances in Numerical Methods in Fluids, Pineridge, Swansea, 1980, pp. 139-168.
[9] ’Numerical methods’, Proc. Multiphase Flow and Heat Transfer: Bases, Modelling and Applications, Zurich, March 1995.
[10] Lahey, Nucl. Eng. Design 141 pp 177– (1993) · doi:10.1016/0029-5493(93)90101-E
[11] and , ’Computer simulation of multi- phase flows; a course of lectures and workshops’, CFD/83/4, CFDU, Imperial College, University of London, 1983.
[12] Malin, PCH J. 5 pp 339– (1984)
[13] and , ’VORT: a computer code for bubbly two-phase flow’, Los Alamos National Laboratory, LA-10021-MS, 1984.
[14] Hills, Trans. Inst. Chem. Eng. 52 pp 1– (1974)
[15] and , ’Phase distribution in bubbly flow: Data Set No. 24’, in and (eds), Multiphase Science and Technology, Vol. 6, Hemisphere, Washington, DC, 1992, p. 257.
[16] Kuo, Int. J. Multiphase Flow 14 pp 547– (1988) · doi:10.1016/0301-9322(88)90057-2
[17] Wallis, Int. J. Multiphase Flow 1 pp 491– (1974) · doi:10.1016/0301-9322(74)90003-2
[18] Cook, Int. J. Multiphase Flow 10 pp 691– (1984) · Zbl 0577.76093 · doi:10.1016/0301-9322(84)90005-3
[19] Drew, Int. J. Multiphase Flow 13 pp 113– (1987) · Zbl 0627.76014 · doi:10.1016/0301-9322(87)90011-5
[20] Lahey, Nucl. Eng. Design 122 pp 17– (1990) · doi:10.1016/0029-5493(90)90194-3
[21] Kowe, Int. J. Multiphase Flow 14 pp 587– (1988) · doi:10.1016/0301-9322(88)90060-2
[22] Watanabe, Nucl. Eng. Design 120 pp 181– (1990) · doi:10.1016/0029-5493(90)90371-4
[23] ’Prediction of some complex multi-dimensional two-phase flow phenomena using the PHOENICS code’, Proc. 2nd Int. PHOENICS Users Conf., London, 1987.
[24] Beyerlein, Int. J. Multiphase Flow 11 pp 629– (1985) · doi:10.1016/0301-9322(85)90083-7
[25] and , ’On the determination of particle-erosion rates within a turbulent boundary layer’, Proc. 7th Symp. on Turbulent Shear Flows. Stanford, CA, August 1989.
[26] Lee, Int. Commun. Heat Mass Transfer 18 pp 333– (1991) · doi:10.1016/0735-1933(91)90020-5
[27] Thermo-Fluid Dynamic Theory of Two-Phase Flow, Eyrolles, Paris, 1975. · Zbl 0325.76135
[28] Drew, Ann. Rev. Fluid Mech. 15 pp 261– (1983) · doi:10.1146/annurev.fl.15.010183.001401
[29] Stuhmiller, Int. J. Multiphase Flow 3 pp 551– (1977) · Zbl 0368.76085 · doi:10.1016/0301-9322(77)90029-5
[30] Antal, Int. J. Multiphase Flow 17 pp 635– (1991) · Zbl 1134.76479 · doi:10.1016/0301-9322(91)90029-3
[31] Johansen, Metall. Trans. B 19 pp 755– (1988) · doi:10.1007/BF02650195
[32] de Bertodano, ASME J. Fluids Eng. 112 pp 107– (1990) · doi:10.1115/1.2909357
[33] Launder, Comput. Methods Appl. Mech. Eng. 3 pp 269– (1974) · Zbl 0277.76049 · doi:10.1016/0045-7825(74)90029-2
[34] Turbulence Models and Their Application in Hydraulics– A State of the Art Review, IAHR, Delft, 1980.
[35] ’Numerical simulation of two-phase flow in bubble columns’, CHAM Rep. 3311/1, CHAM, London, 1995.
[36] Morsi, J. Fluid Mech. 55 pp 193– (1972) · Zbl 0244.76044 · doi:10.1017/S0022112072001806
[37] and , ’Test 2.4, one-dimensional sedimentation’, in and (eds), Multiphase Science and Technology, Vol. 6, Hemisphere, Washington, DC, p. 623, 1992.
[38] Lahey, ASME/JSME Thermal Eng. Proc. 2 pp 193– (1991)
[39] Rice, AIChE J. 36 pp 1339– (1990) · doi:10.1002/aic.690360907
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.