×

Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. (English) Zbl 0890.58048

Summary: We prove the existence of multi-pulse orbits homoclinic to a slow manifold in a two-mode truncation of the damped-forced nonlinear Schrödinger equation (first suggested by Bishop et al.). These orbits are jumping, i.e., the corresponding solutions keep switching in time between neighborhoods of the two characteristic “breathers” of the integrable limit. In the case of no damping, we find multi-pulse Smale horseshoes in the two-mode model, while in the dissipative case we establish the existence of structurally stable, multi-pulse, heteroclinic connections between two unstable equilibria. The orbits we construct are not amenable to Melnikov-type perturbation methods. In both the Hamiltonian and the dissipative case we find homoclinic trees, which describe the repeated bifurcations of multi-pulse solutions. To illustrate the theoretical predictions, we also present visualizations of these complicated structures.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
35Q55 NLS equations (nonlinear Schrödinger equations)
34C37 Homoclinic and heteroclinic solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ablowitz, M. J.; Herbst, B. M., On homoclinic structures and numerically induced chaos for the nonlinear Schrödinger equation, SIAM J. Appl. Math., 50, 339-351 (1990) · Zbl 0707.35141
[2] Bishop, A. R.; Forest, M. G.; McLaughlin, D. W.; Overman, E. A., A modal representation of chaotic attractors for the driven, damped pendulum chain, Phys. Lett. A, 144, 17-25 (1990)
[3] Bishop, A. R.; Flesch, R.; Forest, M. G.; McLaughlin, D. W.; Overman, E. A., Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system, SIAM J. Math. Anal., 21, 1511-1536 (1990) · Zbl 0718.35086
[4] Cascon, A.; Koiller, J.; Rezende, S. M., Bifurcations of mode equations: spin waves, Physica D, 54, 98-124 (1991) · Zbl 0729.76549
[5] Constantin, P.; Foias, C.; Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations (1988), Springer: Springer New York · Zbl 0683.58002
[6] Ercolani, N. M.; Forest, M. G.; McLaughlin, D. W., Geometry of the modulational instability, Part III: Homoclinic Orbits for the periodic sine-Gordon equation, Physica D, 43, 349-384 (1990) · Zbl 0705.58026
[7] Ercolani, N. M.; McLaughlin, D. W., Towards a topological classification of integrable PDE’s, (The Geometry of Hamiltonian Systems (1991), Springer: Springer New York) · Zbl 0597.58011
[8] Feng, Z. C.; Sethna, P. R., Symmetry breaking bifurcations in resonant surface waves, J. Fluid Mech., 199, 495-518 (1989) · Zbl 0659.76026
[9] Feng, Z. C.; Sethna, P. R., Global bifurcation and chaos in parametrically forced systems with one-one resonance, Dynam. Stab. Syst., 5, 201-225 (1990) · Zbl 0727.34027
[10] Feng, Z. C.; Sethna, P. R., Global bifurcations in the motion of parametrically excited thin plates, Nonlinear Dynam., 4, 398-408 (1993)
[11] Feng, Z. C.; Wiggins, S., On the existence of chaos in a class of two-degree-of freedom, damped, strongly parametrically forced mechanical systems with broken \(O(2)\) symmetry, ZAMP, 44, 201-248 (1993) · Zbl 0786.34050
[12] Fenichel, N., Persistence and smoothness of invariant manifolds for flows, Ind. Univ. Math. J., 21, 193-225 (1971) · Zbl 0246.58015
[13] Haller, G.; Wiggins, S., Orbits homoclinic to resonances: the Hamiltonian case, Physica D, 66, 298-346 (1993) · Zbl 0791.34041
[14] Haller, G.; Wiggins, S., Whiskered tori and chaos in resonant Hamiltonian normal forms, (Normal Forms and Homoclinic Chaos (1995), Fields Institute Publications), to appear · Zbl 0849.70013
[15] Haller, G.; Wiggins, S., \(N\)-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems, Arch. Rat. Mech. Anal. (1995), to appear · Zbl 0829.58016
[16] Haller, G.; Wiggins, S., Geometry and chaos near resonant equilibria of 3DOF Hamiltonian systems, Physica D (1994), submitted
[17] G. Haller, Irregular jumping and heteroclinic orbits in the perturbed nonlinear Schrödinger equation, in preparation.; G. Haller, Irregular jumping and heteroclinic orbits in the perturbed nonlinear Schrödinger equation, in preparation.
[18] Holmes, P., A nonlinear oscillator with a strange attractor, Phil. Trans. R. Soc. A, 292, 419-448 (1979) · Zbl 0423.34049
[19] Holmes, P.; Marsden, J., A partial differential equation with infinitely many periodic orbits: chaotic oscillations of a forced beam, Arch. Rat. Mech. Anal., 76, 135-166 (1981) · Zbl 0507.58031
[20] Holmes, P.; Marsden, J., Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom, Commun. Math. Phys., 82, 523-544 (1982) · Zbl 0489.58013
[21] Holmes, P., Chaotic motion in a weakly nonlinear model for surface waves, J. Fluid. Mech., 162, 365-388 (1986) · Zbl 0602.76015
[22] Jones, C. K.R. T.; Kaper, J.; Kopell, N., Tracking invariant manifolds up to exponentially small errors (1993), preprint · Zbl 0871.58072
[23] Kaper, T. J.; Kovačič, G., Multiple-pulse homoclinic orbits near resonance bands (1993), preprint
[24] Kovačič, G.; Wiggins, S., Orbits homoclinic to resonances, with an application to chaos in the damped and forced sine-Gordon equation, Physica D, 57, 185-225 (1992) · Zbl 0755.35118
[25] Li, Y., Chaotic Dynamics in Partial Differential Equations, (Ph.D. Thesis (1993), Princeton University)
[26] Li, Y.; McLaughlin, D. W., Morse and Melnikov functions for NLS PDE’s, Commun. Math. Phys., 162, 175-214 (1994) · Zbl 0808.35140
[27] Marsden, J.; McCracken, M., The Hopf Bifurcation and Its Applications (1976), Springer: Springer New York · Zbl 0346.58007
[28] McLaughlin, D.; Overman, E. A.; Wiggins, S.; Xiong, C., Homoclinic orbits in a four dimensional model of a perturbed NLS equation: a geometric singular perturbation study, (Dynamics Reported (1993)), submitted · Zbl 0848.35125
[29] Mielke, A., Hamiltonian and Lagrangian Flows on Center Manifolds, (Lecture Notes in Mathematics, Vol. 1489 (1991), Springer: Springer New York) · Zbl 0747.58001
[30] Nayfeh, A. H.; Pai, P. F., Non-linear, non-planar parametric responses of an inextensional beam, Int. J. Non-lin. Mech., 24, 139-158 (1989) · Zbl 0673.73043
[31] C. Robinson, Horsehoes for autonomous Hamiltonian systems using the Melnikov integral, Ergod. Th. Dynam. Sys. 8, pp. 395-409.; C. Robinson, Horsehoes for autonomous Hamiltonian systems using the Melnikov integral, Ergod. Th. Dynam. Sys. 8, pp. 395-409. · Zbl 0666.58039
[32] Tien, W.-M.; Namamchchivaya, N. S., Nonlinear dynamics of a shallow arch under periodic excitation II: 1:1 internal resonance, Int. J. Non-Lin. Mech., 29, 3, 367-386 (1994) · Zbl 0808.73044
[33] Wiggins, S., Global Bifurcations and Chaos-Analytical Methods (1988), Springer: Springer New York · Zbl 0661.58001
[34] Wiggins, S., Normally Hyperbolic Invariant Manifolds in Dynamical Systems (1994), Springer: Springer New York · Zbl 0812.58001
[35] Yang, X. L.; Sethna, P. R., Non-linear phenomena in forced vibrations of a nearly square plate: antisymmetric case, J. Sound Vib., 155, 413-441 (1992) · Zbl 0925.73300
[36] Zakharov, V. E.; Shabat, A. B., Exact theory of two dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34, 62-69 (1972)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.