×

zbMATH — the first resource for mathematics

Admissible approximations for essential boundary conditions in the reproducing kernel particle method. (English) Zbl 0889.73078
Two methods of generating admissible meshless approximations are presented: one in which the RKPM (reproducing kernel particle method) correction function equals zero at the boundary, and another in which the domain of the window function is selected such that the approximate solution vanishes at the boundary. An extension of the RKPM dilation parameter is also introduced, providing the capability to generate approximations with arbitrarily shaped supports. Additional issues such as degeneration of shape functions from two dimensions to one dimension and moment matrix conditioning are also addressed.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Beissel, S.; Belytschko, T. (1996): Nodal integration of the element-free Galerkin method. To appear in Computer Methods in Applied Mechanics and Engineering · Zbl 0918.73329
[2] Belytschko, T.; Krongauz, Y.; Fleming, M.; Organ, D.; Liu, W. K. (1996): Smoothing and accelerated computations in the element-free Galerkin method. To appear in Journal of Computational and Applied Mathematics · Zbl 0862.73058
[3] Belytschko, T.;Lu, Y. Y.;Gu, L. (1994): Element-free Galerkin methods. Int. Num. Methods in Engineering 37: 229–256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[4] Duarte, C. A.; Oden, J. T. (1995): Hp clouds–a meshless method to solve boundary-value problems. Technical Report 95-05, Texas Institute for Computational and Applied Mathematics, University of Texas at Austin
[5] Hughes, T. J. R. (1987): The Finite element Method. Englewood Cliffs, N.J.: Prentice-Hall. · Zbl 0634.73056
[6] Krongauz, Y.; Belytschko, T. (1996): Enforcement of essential boundary conditions in meshless approximations using finite elements. To appear in Computer Methods in Applied Mechanics and Engineering · Zbl 0881.65098
[7] Lancaster, P.;Salkauskas, K. (1981): Surfaces generated by moving least squares methods. Mathematics of Computation 37: 141–158 · Zbl 0469.41005 · doi:10.1090/S0025-5718-1981-0616367-1
[8] Liu, W. K.;Chen, Y. (1995): Wavelet and multiple scale reproducing kernel methods. International Journal for Numerical Methods in Fluids 21: 901–931 · Zbl 0885.76078 · doi:10.1002/fld.1650211010
[9] Liu, W. K.; Chen, Y.; Chang, C. T.; Belytschko, T. (1996): Advances in multiple scale kernel particle methods. Computational Mechanics · Zbl 0868.73091
[10] Liu, W. K.;Chen, Y.;Jun, S.;Chen, J.;Belytschko, T.;Pan, C.;Uras, R. A.;Chang, C. T. (1996): Overview and applications of the reproducing kernel particle methods. Archives of Computational Methods in Engineering; State of the art reviews 3: 3–80 · doi:10.1007/BF02736130
[11] Liu, W. K.;Y. Chen, Y.;Uras, R. A. (1995): Enrichment of the finite element method with reproducing kernel particle method. Current Topics in Computational Mechanics, eds. Cory, J. F. Jr., Gordon, J. L., ASME PVP 305: 253–258
[12] Liu, W. K.; Chen, Y.; Uras, R. A.; Chang, C. T. (1996): Generalized multiple scale reproducing kernel particle methods. To appear in a special issue, Meshless Methods, in Computer Methods in Applied Mechanics and Engineering · Zbl 0896.76069
[13] Liu, W. K.;Jun, S.;Li, S.;Adee, J.;Belytschko, T. (1995): Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering 38: 1655–1679 · Zbl 0840.73078 · doi:10.1002/nme.1620381005
[14] Liu, W. K.;Jun, S.;Zhang, Y. F. (1995): Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering 20: 1081–1106 · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[15] Liu, W. K.; Li, S.; Belytschko, T. (1996): Moving least square kernel method, methodology and convergence. Accepted for publication in Computer Methods in Applied Mechanics and Engineering · Zbl 0883.65088
[16] Lu, Y. Y.;Belytschko, T.;Gu, L. (1994): A new implementation of the element free Galerkin method. Computer Methods in Applied Mechanics and Engineering 113: 397–414 · Zbl 0847.73064 · doi:10.1016/0045-7825(94)90056-6
[17] Oñate, E.; Idelsohn, S.; Zienkiewicz, O. C.; Taylor, R. L.; Sacco, C. (1996): A stabilized finite point method for analysis of fluid mechanics problems. submitted · Zbl 0894.76065
[18] Timoshenko, S. P.;Goodier, J. N. (1970): Theory of Elasticity (Third ed.). New York: McGraw Hill. · Zbl 0266.73008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.