×

zbMATH — the first resource for mathematics

ELAFINT: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. (English) Zbl 0887.76059
A mixed Eulerian-Lagrangian technique is devised, abbreviated as ELAFINT (Eulerian-Lagrangian algorithm for interface tracking). The method is capable of handling fluid flows in the presence of both irregularly shaped solid boundaries and moving/free phase boundaries. The position and shape of the boundary are tracked explicitly by the Lagrangian translation of marker particles. The field equations are solved on an underlying fixed grid as in Eulerian methods. The method is tested by comparing with solutions from well-tested body-fitted coordinate methods. Test cases pertaining to forced and natural convection in irregular geometries and moving phase boundaries with melt convection are presented.

MSC:
76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T99 Multiphase and multicomponent flows
80A22 Stefan problems, phase changes, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Free and Moving Boundary Problems, Oxford University Press, Oxford, 1984.
[2] Floryan, Appl. Mech. Rev. 42 pp 323– (1989) · doi:10.1115/1.3152416
[3] and , Numerical Grid Generation, Elsevier, New York, 1985.
[4] Shyy, Int. J. Heat Mass Transfer 36 pp 1833– (1993) · doi:10.1016/S0017-9310(05)80170-X
[5] Shyy, Appl. Math. Comput. 21 pp 201– (1987)
[6] Hirt, J. Comput. Phys. 39 pp 201– (1981) · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[7] Sethian, J. Diff. Geom. 31 pp 131– (1990) · Zbl 0691.65082 · doi:10.4310/jdg/1214444092
[8] Kobayashi, Physica D 63 pp 410– (1993) · Zbl 0797.35175 · doi:10.1016/0167-2789(93)90120-P
[9] Wheeler, Physica D 66 pp 243– (1993) · Zbl 0800.76491 · doi:10.1016/0167-2789(93)90242-S
[10] Liang, AIAA J. 29 pp 161– (1991) · doi:10.2514/3.10560
[11] Udaykumar, Numer. Heat Transfer B 27 pp 127– (1994) · doi:10.1080/10407799508914950
[12] Miyata, J. Comput. Phys. 65 pp 179– (1986) · Zbl 0591.76024 · doi:10.1016/0021-9991(86)90011-2
[13] Morinishi, Comput. Fluids 21 pp 331– (1992) · Zbl 0753.76121 · doi:10.1016/0045-7930(92)90042-T
[14] ’An alternative to unstructured grids for computing gas dynamic flows around arbitrarily complex two-dimensional bodies’, ICASE Rep. 92-7, NASA Langley Research Center, Hampton, VA, 1992.
[15] and , ’An adaptively-refined Cartesian mesh solver for the Euler equations’, AIAA Paper 90-0000, 1990.
[16] and , ’A simulation technique for 2-D unsteady inviscid flows around arbitrarily moving and deforming bodies of arbitrary geometry’, AIAA Paper 93-3391, 1993.
[17] Kothe, AIAA J. 30 pp 2694– (1992) · Zbl 0762.76074 · doi:10.2514/3.11286
[18] Kessler, Adv. Phys. 37 pp 255– (1988) · doi:10.1080/00018738800101379
[19] Langer, Rev. Mod. Phys. 52 pp 1– (1980) · doi:10.1103/RevModPhys.52.1
[20] Glicksmann, Ann. Rev. Fluid Mech. 18 pp 307– (1986) · doi:10.1146/annurev.fl.18.010186.001515
[21] Ostrach, J. Fluid Eng. 105 pp 5– (1983) · doi:10.1115/1.3240942
[22] and , ’Development of a grid-supported maker particle scheme for interface tracking’, AIAA Paper 93-3384, 1993.
[23] Wang, J. Comput. Phys. 84 pp 145– (1989) · Zbl 0678.76057 · doi:10.1016/0021-9991(89)90186-1
[24] Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC, 1980. · Zbl 0521.76003
[25] Computational Modelling for Fluid Flow and Interfacial Transport, Elsevier, Amsterdam, 1994.
[26] Gau, Trans. ASME 108 pp 174– (1986) · doi:10.1115/1.3246884
[27] and , ’Melting and solidification of a liquid metal at a vertical wall’, AIAA Paper 94-0792, 1994.
[28] Lacroix, Numer. Heat Transfer B 15 pp 191– (1989) · doi:10.1080/10407798908944900
[29] Lacroix, Numer. Heat Transfer B 17 pp 25– (1990) · Zbl 0693.76093 · doi:10.1080/10407799008961731
[30] and , ’Enthalpy based formulations for phase change problems with application to g-jitter’, AIAA Paper 93-2831, 1993;
[31] Micrograv. Sci. Technol. 7 pp 41– (1994)
[32] Voller, Int. J. Heat Mass Transfer 30 pp 1709– (1987) · doi:10.1016/0017-9310(87)90317-6
[33] and , ’Influence of an external periodic flow on dendritic crystal growth’, in and (eds), Nonlinear Evolution of Spatio-temporal Structures in Dissipative Dynamical Systems, Plenum, New York, 1990.
[34] Sato, Trans. Jpn. Inst. Met. 28 pp 1012– (1987) · doi:10.2320/matertrans1960.28.1012
[35] Tirmizi, J. Cryst. Growth 85 pp 488– (1987) · doi:10.1016/0022-0248(87)90482-9
[36] , and , Computational Fluid Dynamics with Moving Boundaries, Hemisphere, Washington, DC, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.