×

zbMATH — the first resource for mathematics

Non-singular Somigliana stress identities in elasticity. (English) Zbl 0886.73005
The authors show that two fully equivalent and regular forms of the hypersingular Somigliana stess identity in elasticity can be used for studying problems with \(C^{1, \alpha}\)-continuous displacement fields (and the resulting stresses). Each form is found by a decomposition of the kernel of the Somigliana stress identity is three dimensions. It is interesting to note that the use of a single stress state for the regularization arises in a direct manner from the Somigliana stress identity, in the same way as the constant displacement regularization arises naturally from the Somigliana displacement indentity. Moreover, the same construction leads naturally to the finite part of the same identity. The paper deals specifically with the corner problem and shows that the continuity of densities in the hypersingular stress identity can be replaced by the requirement of the displacement continuity.
The regularized and finite part forms of the Somigliana stress identity lead to a regularized form of the stress boundary integral equation (stress BIE). The stress BIE is shown to possess piecewise discontinuity of the boundary data due to \(C^{1, \alpha}\)-continuity of the underlying displacements. These results find application in the boundary element modeling of hypersingular problems. The piecewise discontinuity for corner provides a rigorous and non-singular basis for collocation of discontinuous boundary data for both regularized and finite part forms of stress BIE. The boundary stress solution in both situations is shown to be average of the computed stresses at collocation points at the vertices of the boundary element meshes. Collocation at these points does not contain any unbounded terms, thereby eliminating the use of non-conforming elements for hypersingular equations. So analytical results of this paper justify the correct use of both regularized and finite part forms of the stress BIE’s, thus giving a basis for the boundary element analysis.

MSC:
74B05 Classical linear elasticity
74B10 Linear elasticity with initial stresses
74S15 Boundary element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Muci-Küchler, Int. J. numer. methods eng. 36 pp 2837– (1993) · Zbl 0780.73094 · doi:10.1002/nme.1620361611
[2] Heise, J. Elasticity 12 pp 293– (1982) · Zbl 0489.73024 · doi:10.1007/BF00054960
[3] Martin, Int. J. numer. methods eng. 39 pp 687– (1996) · Zbl 0846.65070 · doi:10.1002/(SICI)1097-0207(19960229)39:4<687::AID-NME876>3.0.CO;2-S
[4] Krishnasamy, Comput. Mech. 9 pp 267– (1992) · Zbl 0755.65108 · doi:10.1007/BF00370035
[5] Foundations of Potential Theory, Dover, New York, 1953. · Zbl 0053.07301
[6] Polch, Comput. Mech. 2 pp 253– (1987) · Zbl 0616.73093 · doi:10.1007/BF00296420
[7] ’Three-dimensional elastic surface cracks’, in (ed.), Fracture Mechanics: Nineteenth Symposium, ASTM STP 969, American society for Testing and Materials, 1988, pp. 19-42. · doi:10.1520/STP33067S
[8] and , ’Traction boundary integral equation (BIE) formulations and applications to non-planer and multiple cracks’, in , , and (eds.), Fracture Mechanics: Twenty-Second Symposium II, ASTM STP 1131, 1992, pp. 314-332. · doi:10.1520/STP23712S
[9] Bui, J. Mech. Phys. Solids 25 pp 23– (1977) · Zbl 0355.73074 · doi:10.1016/0022-5096(77)90018-7
[10] ’Une nouvelle methode d’ equations integrales pour certain problémes de fissures planes’, Thèse, Université Paris VI, 1980.
[11] Gray, Int. J. numer. methods eng. 29 pp 1135– (1990) · Zbl 0717.73081 · doi:10.1002/nme.1620290603
[12] Cruse, Comput. Mech. 11 pp 1– (1993) · Zbl 0763.73061 · doi:10.1007/BF00370069
[13] Cruse, Comput. Struct. 4 pp 741– (1974) · doi:10.1016/0045-7949(74)90042-X
[14] Huang, Int. J. Numer. Methods Eng. 37 pp 2041– (1994) · Zbl 0832.73076 · doi:10.1002/nme.1620371204
[15] Liu, Eng. Anal. Boundary Elements 8 pp 301– (1991) · doi:10.1016/0955-7997(91)90043-S
[16] Rudolphi, Math. Comput. Modeling 15 pp 269– (1991) · Zbl 0728.73081 · doi:10.1016/0895-7177(91)90071-E
[17] Sisson, Comput. Methods Appl. Mech. Eng. 79 pp 281– (1990) · Zbl 0715.73076 · doi:10.1016/0045-7825(90)90065-T
[18] Matsumoto, Int. J. numer. methods eng. 36 pp 783– (1993) · Zbl 0825.73909 · doi:10.1002/nme.1620360505
[19] ’Accurate evaluation of stresses on the boundary using hypersingular integral equations’, in (ed.), Proceedings of the First European Conference on Numerical Methods in Engineering, Elsevier, Amsterdam, 1992.
[20] Guiggiani, J. Appl. Mech. 59 pp 604– (1992) · Zbl 0765.73072 · doi:10.1115/1.2893766
[21] Cruse, Int. J. Solids Struct. 5 pp 1259– (1969) · Zbl 0181.52404 · doi:10.1016/0020-7683(69)90071-7
[22] Rizzo, Int. J. Numer. Methods Eng. 11 pp 1753– (1977) · Zbl 0387.73007 · doi:10.1002/nme.1620111109
[23] Hartmann, J. Elasticity 11 pp 403– (1981) · Zbl 0487.73014 · doi:10.1007/BF00058082
[24] Fiedler, Int. J. numer methods eng. 38 pp 3275– (1995) · Zbl 0854.73076 · doi:10.1002/nme.1620381907
[25] Cruse, Int. J. Fracture Mech. 7 pp 1– (1971) · doi:10.1007/BF00236479
[26] Personal Communication to T. A. Cruse, 19 February 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.