×

zbMATH — the first resource for mathematics

On sums of fractional parts \(\{na+y\}\). (English) Zbl 0886.11045
The authors obtain an explicit formula for the sum \[ C_m(\alpha,\gamma)= \sum_{1\leq k\leq m} (\{k\alpha+ \gamma\}-\textstyle{{1\over 2}}), \] where \(\alpha\) is an irrational. The formula is based on the continued fraction expansion of \(\alpha\), and the method is very related to J. Schoißengeier [Acta Arith. 44, 241-279 (1984; Zbl 0544.10035); see also Monatsh. Math. 102, 59-77 (1986; Zbl 0613.10011); and Math. Ann. 296, 529-545 (1993; Zbl 0786.11043)] and C. Baxa and J. Schoißengeier [Acta Arith. 68, 281-290 (1994; Zbl 0828.11038)]. In the present paper, tight bounds for \(C_m(\alpha,\gamma)\) are established in terms of the generalized Zechendorf-expansion (= Ostrowski-expansion) related to \(\alpha\). Furthermore, an explicit formula is stated which immediately yields bounds for the discrepancy of the \((\{n\alpha\})^\infty_{n= 1}\) sequence.
Reviewer: R.F.Tichy (Graz)

MSC:
11K06 General theory of distribution modulo \(1\)
11J70 Continued fractions and generalizations
11K38 Irregularities of distribution, discrepancy
11J71 Distribution modulo one
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Baxa, C.; Schoissengeier, J., Minimum and maximum order of magnitude of the discrepancy of (, Acta arith. (3), 68, 281-290, (1994) · Zbl 0828.11038
[2] Borwein, J.M.; Borwein, P.B., On the generating function of the integer part: [γ, J. number theory, 43, 293-318, (1993) · Zbl 0778.11039
[3] Brown, T.C.; Shiue, P.J., Sums of fractional parts of integer multiples of an irrational, J. number theory, 50, 181-192, (1995) · Zbl 0824.11041
[4] Descombes, I.R., Sur la répartition des somments d’une ligne polygonale régulière nonfermée, Ann. sci. école norm. sup., 75, 284-355, (1956)
[5] Dupain, Y., Intervalles a restes majorés pour la suite , Acta. math. sci. hungar., 29, 289-303, (1977) · Zbl 0372.10026
[6] Dupain, Y.; Sós, V.T., On the one-sided boundedness of discrepancy-function of the sequence , Acta arith., 37, 363-374, (1980) · Zbl 0445.10041
[7] Dupain, Y.; Sós, V.T., On the discrepancy of the sequence , Coll. math. soc. J. bolyai, 34, 355-387, (1981)
[8] Hardy, G.H.; Littlewood, J.E., Some problems of Diophantine approximation; the lattice points of a right-angled triangle, Proc. London math. soc., 20, 15-36, (1922) · JFM 48.0197.07
[9] Hardy, G.H.; Littlewood, J.E., Some problems of Diophantine approximation; the lattice points of a right-angled triangle, Abh. math. sem. univ. Hamburg, 1, 212-249, (1922)
[10] Kesten, H., On a conjecture of erdős and szüsz related to uniform distribution mod 1, Acta. arith., 12, 193-212, (1966) · Zbl 0144.28902
[11] Kuipers, L.; Niederreiter, H., Uniform distribution of sequences, (1974), Wiley New York · Zbl 0281.10001
[12] Lerch, M., Question 1547, L’intermédiate des mathématiciens, 11, 145-146, (1904)
[13] Lesca, J., Sur la repartition modulo 1 de la suite, Acta arith., 20, 345-352, (1972) · Zbl 0239.10018
[14] Ostrowski, A., Bemerkungen zur theorie der diophantischen approximation, Abh. math. sem. univ. Hamburg, 1, 77-98, (1922) · JFM 48.0185.01
[15] Roth, K.F., Rational approximations to algebraic numbers, Mathematika, 2, (1955) · Zbl 0064.28501
[16] Schoissengeier, J., On the discrepancy of (, Acta arith., 44, 241-279, (1984) · Zbl 0506.10031
[17] Schoissengeier, J., On the discrepancy of (, J. number theory, 24, 54-64, (1986) · Zbl 0588.10058
[18] Schoissengeier, J., Abschätzungen für ∑_nNB1nα, Mh. math., 102, 59-77, (1986)
[19] Schoissengeier, J., The discrepancy of (n, Math. ann., 296, 529-545, (1993) · Zbl 0786.11043
[20] Sós, V.T., On the theory of Diophantine approximations, I, Acta Mathematica, 8, 461-472, (1957) · Zbl 0080.03503
[21] Sós, V.T., On the theory of Diophantine approximations, II, Acta math. acad. sci. hungar., 9, 229-241, (1958) · Zbl 0086.03902
[22] Sós, V.T., On the discrepancy of the sequence , Coll. math. soc. J. bolyai, 13, 359-367, (1976)
[23] Sós, V.T., On strong irregularities of the distribution of , Studies in pure mathematics, dedicated to the memory of paul Turán, (1983), Birkhäuser Basel, p. 685-699
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.