Bessel processes, Asian options, and perpetuities. (English) Zbl 0884.90029

Summary: Using Bessel processes, one can solve several open problems involving the integral of an exponential of Brownian motion. This point will be illustrated with three examples. The first one is a formula for the Laplace transform of an Asian option which is “out of the money”. The second example concerns volatility misspecification in portfolio insurance strategies, when the stochastic volatility is represented by the Hull and White model. The third one is the valuation of perpetuities or annuities under stochastic interest rates within the Cox-Ingersoll-Ross framework. Moreover, without using time changes or Bessel processes, but only simple probabilistic methods, we obtain further results about Asian options: the computation of the moments of all orders of an arithmetic average of geometric Brownian motion; the property that, in contrast with most of what has been written so far, the Asian option may be more expensive than the standard option (e.g., options on currencies or oil spreads); and a simple, closed-form expression of the Asian option price when the option is “in the money”, thereby illumnating the impact on the Asian option price of the revealed underlying asset price as time goes by. This formula has an interesting resemblance with the Black-Scholes formula, even though the comparison cannot be carried too far.


91B28 Finance etc. (MSC2000)
Full Text: DOI


[1] Bick A., Quadratic Variation Based Dynamic Strategies (1991) · Zbl 0836.90009
[2] DOI: 10.1086/260062 · Zbl 1092.91524
[3] L. Bouaziz, E. Bryis, and M. Crouhy(1991 ): ”The Pricing of Forward-Starting Asian Options,” preprint.
[4] Bougerol P., Ann. Inst. H. Poincare 19 pp 369– (1983)
[5] Carverhill A. P., Risk 3 pp 25– (1990)
[6] DOI: 10.2307/1911241 · Zbl 0576.90006
[7] DOI: 10.1016/0167-6687(89)90056-5 · Zbl 0704.62096
[8] Dufresne D., Scand. Actuaril J. pp 39– (1990) · Zbl 0743.62101
[9] Feller W., An Introduction to Probability Theory and Its Applications 2 (1964) · Zbl 0115.35308
[10] DOI: 10.1016/S0261-5606(83)80001-1
[11] Geman H., The Importance of the Forward-Neutral Probability Measure in a Stochastic Approach to Interest Rates (1989)
[12] Geman H., Appl. Stoch. Models Data Anal. 8 pp 179– (1992)
[13] Geman H., A Framework for Interest Rate Risk Analysis and Portfolio Management (1989)
[14] Geman H., C. R. Acad. Sci. Paris Ser pp 471– (1992)
[15] DOI: 10.1016/0022-0531(79)90043-7 · Zbl 0431.90019
[16] DOI: 10.1016/0304-4149(81)90026-0 · Zbl 0482.60097
[17] Hill J., J. Portfolio Management (1988)
[18] DOI: 10.2307/2328253
[19] Ito K., Diffusion Processes and Their Sample Paths (1965) · Zbl 0127.09503
[20] DOI: 10.1016/0378-4266(90)90039-5
[21] Lebedev N., Special Functions and Their Applications (1972)
[22] DOI: 10.1016/0261-5606(92)90013-N
[23] Levy E., Risk 5 pp 53– (1992)
[24] DOI: 10.2307/2328800
[25] DOI: 10.1007/BF00532802 · Zbl 0484.60062
[26] Rendleman R. J., Financial Anal. J. pp 60– (1990)
[27] Revuz D., Continuous Martingales and Brownian Motion. (1991) · Zbl 0731.60002
[28] Rogers L. C. G., Diffusions, Markov Processes and Martingales. (1987) · Zbl 0627.60001
[29] Ruttiens A., Risk 3 pp 33– (1990)
[30] DOI: 10.1007/BF00736006 · Zbl 0327.60047
[31] DOI: 10.2307/2331213
[32] DOI: 10.1016/0304-405X(77)90016-2 · Zbl 1372.91113
[33] Vorst T., Average Rate Exchange Options (1990)
[34] Williams D., Proc. London Math. Soc. 28 (3) pp 738– (1974)
[35] DOI: 10.1007/BF00531612 · Zbl 0436.60057
[36] Yor M., Lecture Notes in Math., E.T.H. (Zurich) (1992)
[37] DOI: 10.2307/1427477 · Zbl 0765.60084
[38] Yor M., C.R. acad. sci. paris ser. 1 pp 314– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.