×

zbMATH — the first resource for mathematics

A note on Kolmogorov’s third-order structure-function law, the local isotropy hypothesis and the pressure-velocity correlation. (English) Zbl 0884.76027
We show that Kolmogorov’s inertial-range law for the third-order structure function can be derived from a dynamical equation including pressure terms and mean flow gradient terms. A new inertial-range law, relating the two-point pressure velocity correlation to the single-point pressure-strain tensor, is also derived. This law shows that the two-point pressure-velocity correlation, just like the third-order structure function, grows linearly with the separation distance in the inertial range. The physical meaning of both this law and Kolmogorov’s law is illustrated by a Fourier analysis.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Frisch, Proc. R. Soc. Lond. 434 pp 89– (1991)
[2] DOI: 10.1017/S0022112088003015 · doi:10.1017/S0022112088003015
[3] DOI: 10.1063/1.1692443 · Zbl 0217.25801 · doi:10.1063/1.1692443
[4] DOI: 10.1063/1.868690 · doi:10.1063/1.868690
[5] DOI: 10.1063/1.862965 · doi:10.1063/1.862965
[6] DOI: 10.1017/S002211207000174X · doi:10.1017/S002211207000174X
[7] DOI: 10.1017/S0022112094001370 · doi:10.1017/S0022112094001370
[8] DOI: 10.1017/S0022112062000506 · Zbl 0112.42002 · doi:10.1017/S0022112062000506
[9] DOI: 10.1017/S002211209500406X · Zbl 0854.76042 · doi:10.1017/S002211209500406X
[10] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[11] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[12] Kolmogorov, Proc. R. Soc. Lond. 434 pp 15– (1941) · Zbl 1142.76390 · doi:10.1098/rspa.1991.0076
[13] Kármán, Proc. R. Soc. Lond. 164 pp 192– (1938)
[14] Hunt, Proc. R. Soc. Lond. 434 pp 183– (1991)
[15] Kolmogorov, Proc. R. Soc. Lond. 434 pp 9– (1941) · Zbl 1142.76389 · doi:10.1098/rspa.1991.0075
[16] DOI: 10.1017/S0022112077002286 · doi:10.1017/S0022112077002286
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.