zbMATH — the first resource for mathematics

Virus load and antigenic diversity. (English) Zbl 0883.92017
Summary: We analyse mathematical models for the interaction between virus replication and immune responses. We show that the immune system can provide selection pressure for or against viral diversity. The paper provides new insights into the relationship between virus load (= the abundance of virus in an infected individual) and antigenic diversity. Antigenic variation can increase virus load during infections, but the correlation between load and diversity in comparisons among different infected individuals can be positive or negative, depending on whether individuals differ in their cross-reactive or strain-specific immune responses. We derive two models: our first model applies to any replicating parasite that can escape from immune responses; our second model includes immune function impairment, and specifically describes infections with the human immunodeficiency virus (HIV).

92C60 Medical epidemiology
34A99 General theory for ordinary differential equations
Full Text: DOI
[1] Baier, M., M. T. Dittmar, K. Cichutek and R. Kurth. 1980. Development in vivo of genetic variability of SIV.Proc. Natl. Acad. Sci. USA 88, 8126–8130.
[2] Balfe, P., P. Simmonds, C. A. Ludlam, J. O. Bishop and A. J. Leigh Brown. 1990. Concurrent evolution of human immunodeficiency virus type 1 in patients infected from the same source: rate of sequence change and low frequency of inactivating mutations.J. Virol. 64, 6221–6233.
[3] Bangham, C. R. M. 1993. Human T-cell leukaemia virus type 1 and neurological disease.Curr. Opin. Neurobiol. 3, 773–778.
[4] Bonhoeffer, S. and M. A. Nowak. 1994. Intra-host versus inter-host selection: viral strategies of immune function impariment.Proc. Natl. Acad. Sci. USA 91, 8062–8066.
[5] Bonhoeffer, S. and M. A. Nowak. 1995. Can live attenuated virus work as post-exposure treatment?Immunol. Today 3, 131–135.
[6] Borrow, P., H. Lewicki, X. Wei, M. S. Horwitz, N. Pfeffer, H. Meyers, J. A. Nelson, J. E. Gairin, B. H. Hahn, M. B. A. Oldstone and G. M. Shaw. 1997. Antiviral pressure exerted by HIV-1 specific CTLs during primary infection demonstrated by rapid selection of CTL escape virus.Nature Med. 3, 205–211.
[7] Burns, D. P. W. and R. C. Desrosiers. 1991. Selection of genetic variants of SIV in persistently infected rhesus monkeys.J. Virol. 65, 1843–1854.
[8] Clements, J. E., F. S. Pedersen, O. Narayan and W. A. Haseltine. 1980. Genomic changes associated with antigenic variation of visna virus during persistent infection.Proc. Natl. Acad. Sci. USA 77, 4454–4458.
[9] de Boer, R. J. and M. C. Boerlijst. 1994. Diversity and virulence thresholds in AIDS.Proc. Natl. Acad. Sci. USA 91, 544–548. · Zbl 0786.92020
[10] de Boer, R. J. and C. A. B. Boucher. 1996. Anti-CD4 therapy for AIDS suggested by mathematical models.Proc. Roy. Soc. London B 263, 899–905.
[11] Delwart, E. L., H. W. Sheppard, B. D. Walker, J. Goudsmit and J. I. Mullins. 1994. Human immunodeficiency virus type 1 evolution in vivo tracked by DNA heteroduplex mobility assays.J. Virol. 68, 6672–6683.
[12] Eigen, M. and P. Schuster. 1977. The hypercycle. A principle of natural self-organization. Part A: emergence of the hypercycle.Naturwissenschaften 64, 541–565.
[13] Ellis, T. M., G. E. Wilcox and W. F. Robinson. 1987. Antigenic variation of CAEV during persistent infection of goats.J. Gen. Virol. 68, 3145–3152.
[14] Ferrari, C., A. Bertoletti, F. Fiaccadori and F. V. Chisari. 1996.Semin. Virol. 7, 23–30.
[15] Frost, S. D. W. and A. R. McLean. 1994. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection.AIDS 8, 323–332.
[16] Goulder, P., R. Phillips, S. McAdam, B. Colbert, G. Ogg, P. Giangrande, G. Luzzi, B. Morgan, A. Edwards, A. McMichael and S. Rowland-Jones. 1996. Late escape from an immunodominant cytotoxic T lymphocyte response associated with progression to AIDS.Nature Med. 3, 212–217.
[17] Herz, A. V. M., S. Bonhoeffer, R. M. Anderson, R. M. May and M. A. Nowak. 1996. Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay.Proc. Natl. Acad. Sci. USA 93, 7247–7251.
[18] Ho, D. D., A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard and M. Markowitz. 1995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.Nature 373(6510), 123–126.
[19] Hofbauer, J. and K. Sigmund. 1988. The theory of evolution and dynamical systems. Cambridge: Cambridge University Press. · Zbl 0678.92010
[20] Holmes, E. C., L. O. Zhang, P. Simmonds, C. A. Ludlam and A. J. Leigh Brown. 1992. Convergent and divergent sequence evolution in the surface envelope glycoprotein of HIV-1 within a single infected patient.Proc. Natl. Acad. Sci. USA 89, 4835–4839.
[21] McLean, A. R. and M. A. Nowak. 1992a. Interactions between HIV and other pathogens.J. Theor. Biol. 155, 69–86.
[22] McLean, A. R. and M. A. Nowak. 1992b. Competition between zidovudine sensitive and resistance strains of HIV.AIDS 6, 71–79.
[23] Meier, U. C., P. Klenerman, P. Griffin, W. James, B. Koppe, B. Larder, A. McMichael and R. Phillips. 1995. Cytotoxic T lymphocyte lysis inhibited by viable HIV mutants.Science 270, 1360–1362.
[24] Mellors, J. W., C. R. Rinaldo, P. Gupta, R. M. White, J. A. Todd and L. A. Kingsley. 1996. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma.Science 272, 1167–1170.
[25] Moskophidis, D. and R. M. Zinkernagel. 1995. Immunobiology of cytotoxic T-cell escape mutants of lymphocytic choriomeningitis virus.J. Virol. 69, 2187–2193.
[26] Niewiesk, S., S. Daenke, C. E. Parker, G. Taylor, J. Weber, S. Nightingale and C. R. Bangham. 1995. Naturally occurring variants of human T-cell leukemia virus type 1 Tax protein impair its recognition by cytotoxic T lymphocytes and the transactivation function of Tax.J. Virol. 69, 2649–2653.
[27] Nowak, M. A., R. M. Anderson, M. C. Boerlijst, S. Bonhoeffer, R. M. May and A. J. McMichael. 1996. HIV-1 evolution and disease progression.Science 274, 1008–1010.
[28] Nowak, M. A., R. M. Anderson, A. R. McLean, T. F. W. Wolfs, J. Goudsmit and R. M. May. 1991. Antigenic diversity threshold and the development of AIDS.Science 254, 963–969.
[29] Nowak, M. A. and C. R. M. Bangham. 1996. Population dynamics of immune responses to persistent viruses.Science 272, 74–79.
[30] Nowak, M. A., S. Bonhoeffer, G. M. Shaw and R. M. May. 1997. Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations.J. Theor. Biol. 184, 203–217.
[31] Nowak, M. A. and R. M. May. 1992. Coexistence and competition in HIV infections.J. Theor. Biol. 159, 329–342.
[32] Nowak, M. A., R. M. May and R. M. Anderson. 1990. The evolutionary dynamics of HIV-1 quasispecies and the development of immunodeficiency disease.AIDS,4, 1095–1103.
[33] Nowak, M. A., R. M. May, R. E. Phillips, S. Rowland-Jones, D. G. Lalloo, S. McAdam, P. Klenerman, B. Köppe, K. Sigmund, C. R. M. Bangham and A. J. McMichael. 1995. Antigenic oscillations and shifting immunodominance in HIV-1 infections.Nature 375, 606–611.
[34] Overbaugh, J., L. M. Rudensey, M. D. Papenhausen, R. E. Benveniste and W. R. Morton. 1991. Variation in SIV env is confined to V1 and V4 during progression to simian AIDS.J. Virol. 65, 7025–7031.
[35] Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard and D. D. Ho. 1996. HIV-1 dynamics in vivo: virion clearance rate, infected cell lifespan, and viral generation time.Science 271, 1582–1585.
[36] Phillips, R. E., S. Rowland-Jones and D. F. Nixon. 1991. HIV genetic variation that can escape cytotoxic T-cell recognition.Nature 354, 453–459.
[37] Pircher, H., D. Moskophidis, U. Rohrer, K. Burki, H. Hengartner and R. M. Zinkernagel. 1990. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo.Nature 346, 629–633.
[38] Price, D. A., P. J. R. Goulder, P. Klenerman, P. J. Easterbrook, M. Troop, C. R. M. Bangham and R. E. Phillips. 1997. Selection of HIV-1 cytotoxic T-lymphocyte escape variants during primary infection.Proc. Nat. Acad. Sci. USA, to appear.
[39] Salinovich, O., S. L. Payne, R. C. Montelaro, K. A. Hussain, C. J. Issel and K. L. Schnorr. 1986. Rapid emergence of novel antigenic and genetic variants of EIAV during persistent infection.J. Virol. 57, 71–80.
[40] Schulz, T. F., D. Whitby, J. G. Hoad, T. Corrah, H. Whittle and R. A. Weiss. 1990. Biological and molecular variability of HIV-2 isolates from The Gambia.J. Virol. 64, 5177–5182.
[41] Wei, X., S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. E. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, M. S. Saag and G. M. Shaw. 1995. Viral dynamics in HIV-1 infection.Nature 373, 117–122.
[42] Wolinsky, S. M., B. T. M. Korber, A. U. Neumann, M. Daniels, K. J. Kunstman, A. J. Whetsell, M. R. Furtado, Y. Cao, D. D. Ho, J. T. Safrit and R. A. Koup. 1996. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection.Science 272, 537–542.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.