×

zbMATH — the first resource for mathematics

Reynolds-number-independent instability of the boundary layer over a flat surface. (English) Zbl 0883.76034
Summary: A three-dimensional mode of spatial instability, related to the temporal algebraic growth that determines lift-up in parallel flow, is found to occur in the two-dimensional boundary layer growing over a flat surface. This unstable perturbation can be framed within the limits of Prandtl’s standard boundary-layer approximation, and therefore develops at any Reynolds number for which the boundary layer exists, in sharp contrast to all previously known flow instabilities which only occur beyond a sharply defined Reynolds-number threshold. It is thus a good candidate for the initial linear amplification mechanism that leads to bypass transition.

MSC:
76E05 Parallel shear flows in hydrodynamic stability
PDF BibTeX Cite
Full Text: DOI
References:
[1] Reddy, J. Fluid Mech. 252 pp 57– (1993)
[2] DOI: 10.1063/1.863490 · Zbl 0466.76030
[3] DOI: 10.1017/S0022112093001429 · Zbl 0773.76030
[4] DOI: 10.1017/S0022112083000968 · Zbl 0515.76040
[5] DOI: 10.1017/S002211209100174X · Zbl 0717.76044
[6] DOI: 10.1063/1.861156 · Zbl 0308.76030
[7] DOI: 10.1063/1.858386
[8] Boberg, Z. Natursforschung 43a pp 697– (1988)
[9] DOI: 10.1063/1.868606 · Zbl 1039.76509
[10] Morkovin, AFFDL Tech. Rep. 229 pp 68– (1968)
[11] DOI: 10.1017/S0022112091003130 · Zbl 0850.76256
[12] DOI: 10.1007/BF00863516 · Zbl 0845.76020
[13] DOI: 10.1142/S0218202591000198 · Zbl 0738.76075
[14] Luchini, Eur. J. Mech. B Fluids 14 pp 169– (1995)
[15] Libby, J. Fluid Mech. 17 pp 433– (1964)
[16] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049
[17] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901
[18] Kachanov, Ann. Rev. Fluid Mech. 26 pp 411– (1994)
[19] DOI: 10.1017/S0022112094003083
[20] Trefethen, Science 261 pp 578– (1993)
[21] Stewartson, J. Math. Phys. 36 pp 137– (1957) · Zbl 0080.18802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.