×

zbMATH — the first resource for mathematics

Smooth Kummer surfaces in projective three-space. (English) Zbl 0883.14019
Summary: In this note we prove the existence of smooth Kummer surfaces in projective three-space containing sixteen mutually disjoint smooth rational curves of any given degree.

MSC:
14J28 \(K3\) surfaces and Enriques surfaces
14N10 Enumerative problems (combinatorial problems) in algebraic geometry
14E25 Embeddings in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Barth and Th. Bauer, Smooth quartic surfaces with 352 conics, Manuscripta Math. 85 (1994), no. 3-4, 409 – 417. · Zbl 0830.14014 · doi:10.1007/BF02568207 · doi.org
[2] W. Barth and I. Nieto, Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines, J. Algebraic Geom. 3 (1994), no. 2, 173 – 222. · Zbl 0809.14027
[3] Th. Bauer, Projective images of Kummer surfaces, Math. Ann. 299 (1994), no. 1, 155 – 170. · Zbl 0793.14029 · doi:10.1007/BF01459777 · doi.org
[4] Godeaux, L.: Sur la surface du quatrième ordre contenant trente-deux droites. Académie Royale de Belgique, Bulletin de la Classe des Sciences, 5. sér., 25, 539-552 (1939) · JFM 65.0724.04
[5] Isao Naruki, On smooth quartic embedding of Kummer surfaces, Proc. Japan Acad. Ser. A Math. Sci. 67 (1991), no. 7, 223 – 225. · Zbl 0763.14019
[6] Nikulin, V.V.: On Kummer surfaces. Math. USSR Izvestija, Vol.9, No.2, 261-275 (1975) · Zbl 0325.14015
[7] B. Saint-Donat, Projective models of \?-3 surfaces, Amer. J. Math. 96 (1974), 602 – 639. · Zbl 0301.14011 · doi:10.2307/2373709 · doi.org
[8] Traynard, E.: Sur les fonctions thêta de deux variables et les surfaces hyperelliptiques. Ann. Scient. Éc. Norm. Sup., 3. sér., t. 24, 77-177 (1907) · JFM 38.0481.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.