×

zbMATH — the first resource for mathematics

Hypersingular BEM for transient elastodynamics. (English) Zbl 0881.73131
The hypersingular BEM formulation is developed for time-domain antiplane elastodynamic problems. First, the gradient representation is found from the displacement one, removing the strong singularities which arise due to the differentiation process. The gradient representation is carried to the boundary through a limiting process, and the resulting equation is shown to be consistent with the static formulation. Next, a numerical treatment of the traction boundary integral equation and its application to crack problems are discussed. For the boundary discretization, conforming quadratic elements are tested.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
74R99 Fracture and damage
74G70 Stress concentrations, singularities in solid mechanics
74H35 Singularities, blow-up, stress concentrations for dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ’Improper integrals in theoretical aerodynamics’, Royal Aircraft Establishment, Current Papers No. 94, Ministry of Supply, Aeronautical Research Council, London, 1952.
[2] ’Field singularities and related integral representations’, in (ed.), Methods of Analysis and Solutions of Crack Problems, Mechanics of Fracture, Vol. 1, Noordhoff, 1984, pp. 239-314.
[3] Ioakimidis, Eng. Fract. Mech. 16 pp 669– (1982) · doi:10.1016/0013-7944(82)90020-0
[4] Zhang, J. Appl. Mech. ASME 55 pp 104– (1988) · Zbl 0663.73072 · doi:10.1115/1.3173614
[5] Zhang, J. Appl. Mech. ASME 56 pp 284– (1989) · Zbl 0711.73264 · doi:10.1115/1.3176080
[6] Buedreck, J. Appl. Mech. ASME 55 pp 405– (1988) · Zbl 0663.73073 · doi:10.1115/1.3173690
[7] Krishnasamy, J. Appl. Mech. ASME 57 pp 404– (1990) · Zbl 0729.73251 · doi:10.1115/1.2892004
[8] Sládek, Appl. Math. Modelling 8 pp 2– (1984) · Zbl 0525.73110 · doi:10.1016/0307-904X(84)90169-0
[9] Hirose, Wave Motion 10 pp 267– (1988) · Zbl 0637.73024 · doi:10.1016/0165-2125(88)90023-6
[10] Hirose, Int. J. numer. methods eng. 28 pp 629– (1989) · Zbl 0669.73077 · doi:10.1002/nme.1620280311
[11] Rudolphi, Math. Comput. Modelling 15 pp 269– (1991) · Zbl 0728.73081 · doi:10.1016/0895-7177(91)90071-E
[12] ’Direct evaluation of hypersingular integrals in 2D BEM’, in (ed.), Notes on Numerical Fluid Mechanics, Vol. 33, Vieweg, Braunschweig, 1992, pp. 23-34. · Zbl 0743.65013
[13] Guiggiani, J. Appl. Mech. ASME 59 pp 604– (1992) · Zbl 0765.73072 · doi:10.1115/1.2893766
[14] Hildenbrand, Eng. Anal. Boundary Elements 10 pp 209– (1992) · doi:10.1016/0955-7997(92)90004-Q
[15] ’Quadrature formulae for finite-part integrals’, CSIR Special Report, WISK 178, National Research Institute for Mathematical Sciences, Pretoria, Republic of South Africa, 1975.
[16] and , ’Solution of steady incompressible two-dimensional Navier-Stokes equations using integral representations’, Boundary Element Techniques: Applications in Fluid Flow and Computational Aspects, Computational Mechanics Publications, Southampton, U.K., 1987.
[17] Tanaka, Appl. Mech. Rev. 47 pp 457– (1994) · doi:10.1115/1.3111062
[18] ’On computing boundary limiting values of boundary integrals with strongly singular and hypersingular kernels in 3D BEM for elastostatics’, Eng. Anal. Boundary Elements, in press.
[19] and , Elastodynamics, Vol. II: Linear Theory, Academic Press, New York, 1975.
[20] ’A time-stepping technique to solve wave propagation problems using the boundary element method’, Ph.D. Thesis, Universiy of Southampton, U.K., 1983.
[21] ’Hypersingular boundary integral equations have an additional free term’, Computational Mechanics, in press.
[22] and , ’Existence and evaluation of the two free terms in the hypersingular boundary integral equation of potential theory’, Eng. Anal. Boundary Elements, in press.
[23] Cole, Bull. Seismo. Soc. Am. 68 pp 1331– (1978)
[24] Domínguez, Math. Comput. Modelling 15 pp 119– (1991) · Zbl 0728.73084 · doi:10.1016/0895-7177(91)90058-F
[25] Boundary Elements in Dynamics, Computational Mechanics Publications, Southampton and Elsevier Applied Science, London, 1993.
[26] Sáez, Int. J. numer. methods eng. 38 pp 1681– (1995) · Zbl 0831.73077 · doi:10.1002/nme.1620381006
[27] Blandford, Int. J. numer. methods eng. 17 pp 387– (1981) · Zbl 0463.73082 · doi:10.1002/nme.1620170308
[28] Martínez, Int. J. numer. methods eng. 20 pp 1941– (1984) · Zbl 0539.73123 · doi:10.1002/nme.1620201013
[29] Thau, Int. J. Eng. Sci. 8 pp 857– (1970) · Zbl 0216.50902 · doi:10.1016/0020-7225(70)90087-X
[30] Bécache, Int. J. numer. methods eng. 36 pp 969– (1993) · Zbl 0772.73088 · doi:10.1002/nme.1620360606
[31] editor-in-chief, Stress Intensity Factor Handbook, Pergamon Press, Oxford, 1987.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.