zbMATH — the first resource for mathematics

Temporal evolution of periodic disturbances in two-layer Couette flow. (English) Zbl 0880.76055
The time-dependent motion for a two-layer Couette flow consisting of fluids of different viscosities is simulated numerically by using an algorithm based on the volume of fluid method. Interfacial tension is included via a continuous surface force algorithm. The algorithm is fine-tuned to handle the motion which is driven by a shear-induced interfacial instability due to the viscosity stratification. The code is validated against linear theory.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76E05 Parallel shear flows in hydrodynamic stability
76V05 Reaction effects in flows
Full Text: DOI
[1] Joseph, D.D.; Renardy, Y.Y., Fundamentals of two-fluid dynamics, part I, mathematical theory and applications; part II, lubricated transport, drops and miscible liquids, (1993), Springer-Verlag New York · Zbl 0784.76003
[2] Joseph, D.D.; Bai, R.; Chen, K.; Renardy, Y., Ann. rev. fluid mech., 29, 65, (1997)
[3] Barthelet, P.; Charru, F.; Fabre, J., J. fluid mech., 303, 23, (1995)
[4] Barthelet, P.; Charru, F., Experimental study of interfacial waves in a two-layer shear flow: short wave modulations and long wave – short wave interactions, Advances in multi-fluid flows, (1996), SIAM Philadelphia, p. 13-41 · Zbl 0876.76019
[5] Renardy, Y., Phys. fluids A, 1, 1666, (1989)
[6] Yeung, R.W., Ann. rev. fluid mech., 14, 395, (1982)
[7] Hyman, J.M., Physica D, 12, 396, (1984)
[8] Unverdi, S.O.; Tryggvason, G., Physica D, 60, 70, (1992)
[9] Unverdi, S.O.; Tryggvason, G., J. comput. phys., 100, 25, (1992)
[10] Sussman, M.; Smereka, P.; Osher, S., J. comput. phys., 114, 146, (1994)
[11] D. B. Kothe, R. C. Mjolsness, M. D. Torrey, 1991, RIPPLE: A computer program for incompressible flows with free surfaces, Los Alamos National Laboratory
[12] Osher, S.; Sethian, J.A., J. comput. phys., 79, 12, (1988)
[13] Lafaurie, B.; Nardone, C.; Scardovelli, R.; Zaleski, S.; Zanetti, G., J. comput. phys., 113, 134, (1994)
[14] F. X. Keller, J. Li, A. Vallet, D. Vandromme, S. Zaleski, 1994, Direct numerical simulation of interface breakup and atomisation, Proc. Sixth Int. Conf. on Liquid Atomization and Spray Systems, A. J. YuleC. Dumouchel, 56, 62
[15] Li, J., Calcul d’interface affine par morceaux, C. R. acad. sci. Paris, 320, 391, (1995) · Zbl 0826.76065
[16] Yiu, R.R.; Chen, K.P., Numerical experiments on disturbed two-layer flows in a channel, (), 368-382 · Zbl 0875.76387
[17] B. D. Nichols, C. W. Hirt, R. S. Hotchkiss, 1980, SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries, Los Alamos Scientific Laboratory
[18] Richards, J.R.; Beris, A.N.; Lenhoff, A.M., Phys. fluids A, 5, 1703, (1993)
[19] Richards, J.R.; Lenhoff, A.M.; Beris, A.N., Phys. fluids, 6, 2640, (1994)
[20] Richards, J.R.; Beris, A.N.; Lenhoff, A.M., Phys. fluids, 7, 2617, (1995)
[21] Renardy, M.; Renardy, Y., Phys. fluids A, 5, 2738, (1993)
[22] Phys. fluids A, 6, 3502, (1994)
[23] Coward, A.V.; Renardy, Y., Small amplitude oscillatory forcing on two-layer plane channel flow, J. fluid mech., 334, 87, (1997) · Zbl 0915.76024
[24] Yih, C.-S., J. fluid mech., 26, 337, (1967)
[25] J. R. Richards, 1994, Department of Chem. Eng. University of Delaware
[26] Patankar, S.V., Numerical heat transfer and fluid flow, (1980), Hemisphere New York · Zbl 0595.76001
[27] Hirt, C.W.; Nichols, B.D., J. comput. phys., 39, 201, (1981)
[28] Youngs, D.L., Time-dependent multi-material flow with large fluid distortion, (), 273-285 · Zbl 0537.76071
[29] D. L. Youngs, 1984, An interface tracking method for a 3d Eulerian hydrodynamic code, AWRE
[30] W. J. Rider, et al. 1995, Accurate solution algorithms for incompressible multiphase fluid flows
[31] W. F. Noh, P. Woodward, 1976, TheSLIC, Lawrence Livermore Laboratory
[32] Ashgriz, N.; Poo, J.Y., J. comput. phys., 93, 449, (1991)
[33] Jurman, L.A.; Deutsch, S.E.; McCready, M.J., J. fluid mech., 238, 187, (1992)
[34] Sangalli, M., Chem. eng. sci, 47, 3289, (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.