×

Finite element analysis of hyperelastic thin shells with large strains. (English) Zbl 0880.73060

A theoretical model is proposed for the behaviour of isotropic hyperelastic shells which are capable of undergoing large deformations and large strains. The intention is that the model form the basis for a finite element analysis. Compressible and incompressible materials are accommodated in the model, though incompressible materials form the focus. The authors review the literature on nonlinear shell models, indicating the restrictions adopted in these cases.
A central feature of the model under consideration is the approximation of the deformed position vector by means of a quadratic function of the thickness coordinate. Thickness-stretching is decoupled from the director-like vector which specifies the deformed position of a material point relative to the deformed middle surface, by the introduction of an independent scalar variable \(\lambda\) for this purpose. The quadratic term is important in compressible problems, if locking is to be avoided in finite element models. Then the models are distinguished by their use of the thickness stretching variable \(\lambda\) and the higher-order displacement which enters the problem through the quadratic approximation.
Attention is restricted to thin shells, and, as a result, the transverse shear strains are neglected. The consequences of this restriction are then developed in detail. With the particular assumptions peculiar to this model, a considerable part of the article is devoted to the formulation of the problem in a form that is amenable to analysis. Thus there is much tensor manipulation. The rest of the article follows a standard procedure: a weak formulation in incremental form, the choice of specific strain energy functions (Mooney-Rivlin and neo-Hookean), and an appropriate choice of finite elements. Regarding the latter, the authors use triangular and rectangular elements, having respectively 54 and 48 degrees of freedom. The midsurface displacement field is approximated by quintic and Hermitian bicubic polynomials, for the two types of elements used.
The model is subjected to quite comprehensive numerical testing, through the consideration of various benchmark problems. The elements chosen appear to be free of locking, and are able to deal with genuine large strain problems. It is also observed that stress distributions are predicted with reasonable accuracy.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K15 Membranes
74B20 Nonlinear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anand, L. 1986: Moderate deformations in extension-torsion of incompressible isotropic elastic material. J. Mech. Phys. Solids Vol. 34, 293-304 · doi:10.1016/0022-5096(86)90021-9
[2] Atluri, S. N. 1983: Alternate stress and conjugate strain measures, and mixed variational formulations involving rigid rotations, for computational analyses of finitely deformed solids, with application to plates and shells-I. Theory. Comp. Struct. 18: 93-116 · Zbl 0524.73043 · doi:10.1016/0045-7949(84)90085-3
[3] Atluri, S. N.; Cazzani, A. 1995: Rotations in computational solid mechanics. Archives of Comp. Meth. Enegn 2: 49-138 · doi:10.1007/BF02736189
[4] Basar, Y.; Ding, Y. 1990: Finite-rotation elements for the nonlinear analysis of thin shell structures. Int. J. Solids Structures 26: 83-97 · Zbl 0707.73076 · doi:10.1016/0020-7683(90)90096-E
[5] Basar, Y.; Ding, Y. 1994: The Consideration of Transverse Normal Strains in the Finite-Rotation Shell Analysis. 2nd Biennial European Joint Conference on Engineering Systems, Design and Analysis, Queen Mary and Westfield College, University of London, July 4-7, 1994
[6] Ba?ar, Y.; Ding, Y.; Krätzig, W. B. 1992: Finite-Rotation Shell Elements via Mixed Formulation. Computational Mechanics 10: 289-306 · Zbl 0779.73055 · doi:10.1007/BF00370095
[7] Ba?ar, Y.; Krätzig, W. B. 1985. Mechanik der Flächentragwerke. Friedr. Vieweg und Sohn, Braunschweig/Wiesbaden.
[8] Brodland, G. W.; Cohen, H. 1987: Large Strain Axisymmetric Deformation of Cylindrical Shells. J. Appl. Mech. 54: 287-291 · Zbl 0613.73038 · doi:10.1115/1.3173009
[9] Büchter, N.; Ramm, E.; Roehl, D. 1994. Three-Dimensional Extension of Nonlinear Shell Formulation Based on the Enhanced Assumed Strain Concept. Int. J. Num. Meth. Engng 37: 2551-2568 · Zbl 0808.73046 · doi:10.1002/nme.1620371504
[10] Büchter, N.; Ramm, E. 1992: Shell Theory versus Degeneration ? a Comparison in Large Rotation Finite Element Analysis. Int. J. Num. Meth. Engng 34: 39-59 · Zbl 0760.73041 · doi:10.1002/nme.1620340105
[11] Cowper, G. R.; Lindberg, G. M.; Olson, M. D. 1970: A shallow shell finite element of triangular shape. Int. J. Solids Structures 6: 1133-1156 · doi:10.1016/0020-7683(70)90052-1
[12] Gebhardt, H. 1990: Finite Element Konzepte für schubelastische Schalen mit endlichen Drehungen. Schriftreihe Heft 10, Karlsruhe 1990, Institut für Baustatik, Universität Fridericiana Karlsruhe (TH), Herausgaber: U. Vogel, K. Schweizerhof
[13] Green, A. E.; Zerna, W. 1968. Theoretical Elasticity, 2nd edn. Clarendon Press, Oxford · Zbl 0155.51801
[14] Gruttmann, F.; Stein, E.; Wriggers, P. 1989: Theory and Numerics of Thin Elastic Shells with Finite Rotations. Ing. Archiv. 59: 54-67 · doi:10.1007/BF00536631
[15] Gruttmann, F.; Taylor, R. L. 1992: Theory and Finite Element Formulation of Rubberlike Membrane Shells Using Principal Stretches. Int. J. Num. Meth. Engng 35: 1111-1126 · Zbl 0768.73074 · doi:10.1002/nme.1620350511
[16] Harte, R. 1982: Doppelt gekrümmte finite Dreieckelemente für die lineare und geometrisch nichtlineare Berechnung allgemeiner Flächentragwerke. Techn.-Wiss. Mitt. Nr. 82-10, Inst. f. Konstr. Ingb., Ruhr-Universität Bochum
[17] Libai, A.; Simmonds, J. G. 1981: Large-Strain Constitutive Laws for the Cylindrical Deformation of Shells. Int. J. Non-Linear Mech. 16: 91-103 · Zbl 0471.73065 · doi:10.1016/0020-7462(81)90001-9
[18] Lo, K. H.; Christensen, R. M.; Wu, E. M. 1977a: A high-order theory of plate deformation, part 1: homogeneous plates. J. Appl. Mech. 44: 669-676 · Zbl 0369.73053 · doi:10.1115/1.3424155
[19] Lo, K. H.; Christensen, R. M.; Wu, E. M. 1977b: A high-order theory of plate deformation, part 2: laminated plates. J. Appl. Mech. 44: 663-668 · Zbl 0369.73052 · doi:10.1115/1.3424154
[20] Makowski, J.; Stumpf, H. 1989: Finite Axisymmetric Deformation of Shells of Revolution with Application to Flexural Buckling of Circular Plates. Ing.-Arch. 59: 456-472 · Zbl 0712.73031 · doi:10.1007/BF00534312
[21] Reissner, E. 1969: On Finite Symmetrical Deflections of Thin Shells of Revolution. J. Appl. Mech. 36: 267-270 · Zbl 0183.53903
[22] Reissner, E. 1970: On Finite Symmetrical Strain in Thin Shells of Revolution. J. Appl. Mech. 36: 1137 · Zbl 0265.73033
[23] Sansour, C.; Bufler, H. 1992: An Exact Finite Rotation Shell Theory, its Mixed Variational Formulation and its Finite Element Implementation. Int. J. Num. Meth. Engng 34: 73-115 · Zbl 0760.73043 · doi:10.1002/nme.1620340107
[24] Schieck, B.; Pietraszkiewicz, W.; Stumpf, H. 1992: Theory and Numerical Analysis of Shells Undergoing Large Elastic Strains. Int. J. Solids Structures 29: 689-709 · Zbl 0760.73044 · doi:10.1016/0020-7683(92)90121-9
[25] Simo, J. C.; Rifai, M. S.; Fox, D. D. 1990: On a Stress Resultant Geometrically Exact Shell Model. Part IV: Variable Thickness with Through-the-Thickness Stretching. Comp. Meth. Appl. Mech. Engng 81: 91-126 · Zbl 0746.73016 · doi:10.1016/0045-7825(90)90143-A
[26] Taber, L. A. 1985: On Approximate Larg Strain Relations for a Shell of Revolution. Int. J. Non-Linear Mech. 20: 27-39 · Zbl 0553.73057 · doi:10.1016/0020-7462(85)90045-9
[27] Wagner, W.; Gruttmann, F. 1994: A Simple Finite Rotation Formulation for Composite Shell Elements. Engineering Computations, 11: 145-176 · doi:10.1108/02644409410799209
[28] Wriggers, P.; Taylor, R. L. 1990: A Fully Non-Linear Axisymmetrical Membrane Element for Rubber-Like Materials. Eng. Comput. 7: 303-310 · doi:10.1108/eb023817
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.