×

zbMATH — the first resource for mathematics

The Green function of the diffusion of fluids in porous media with memory. (English) Zbl 0879.76098
Summary: The basic equations of diffusion in porous media are modified to include the phenomenon of memory of the medium. The memory is formally represented by means of a derivative or an integral of fractional order. The Green function of the diffusion of fluids in these media is found in one-dimensional case.

MSC:
76S05 Flows in porous media; filtration; seepage
76R50 Diffusion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bagley R. L., Torvik P. J., 1983.Fractional calculus-A different approach to the analysis of viscoelastically damped structure. A.I.A.A., 25, 5: 741–749. · Zbl 0514.73048
[2] Boltzmann L., 1894.Zur Integration der Diffusiongleichung bei variablen Diffusionskoeffizienten. Ann. Phys. (Leipzig), 53: 959–964.
[3] Caputo M., 1969.Elasticitàe dissipazione. Zanicheili, Bologna.
[4] Caputo M., 1976.Vibrations of an infinite plate with frequency independent Q. J. Acoust. Soc. Amer., 60, 3: 634–639.
[5] Caputo M., Mainardi F., 1971.Linear models of dissipation in Anelastic Media. II Nuovo Cimento, 1 (2): 1161–1168.
[6] Cisotti V., 1911.L’ereditarietà lineare ed i fenomeni dispersivi. II Nuovo Cimento, 6, II: 234–244.
[7] Darcy H., 1856.Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris.
[8] Graffi D., 1936.Sopra alcuni fenomeni ereditari dell’elettrologia, IL Rend. Ist. Lombardo Scienze Lettere ed Arti, 2, 69: 128–181. · Zbl 0015.13803
[9] Heaviside O., 1899.Electromagnetic Theory, II. The electrician printing and publishing Co.
[10] Körnig H., Müller G., 1989.Rheological models and interpretation of postglacial uplift. Geophys. J. R. Astron. Soc, 98: 245–253.
[11] Jacquelin J., 1984.Use of fractional derivatives to express the properties of energy storage phenomena in electrical networks. Technical Report, Laboratoire Marcoussis.
[12] Le Mehaute A., Crepy G., 1983.Introduction to transfer motion in fractal media: the geometry of kinetics. Solid State Ionics, 9&10: 17–30.
[13] Mainardi F., 1994.On the initial value for the fractional diffusion wave equation. In: S. Rionero, T. Ruggeri (eds.),Waves and Stability in Continuous Media. World Scientific, Singapore.
[14] Pelton W. H., Sill W. R., Smith B. D., 1983.Interpretation of complex resistivity and dielectric data, Part 1. Geophysical Transactions, 29, 4: 297–330.
[15] Roeloffs E. A., 1988.Fault stability changes induced beneath a reservoir with cyclic variations in water level. J. Geophys. Res., 93, B3: 2107–2124.
[16] Taiavani P., Agree S., 1985.Pore pressure diffusion and the mechanism of reservoir-induced seismicity. Pure and Appl. Geophys., 122.
[17] Terzaghi K., 1923.Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungsercheinungen. Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2A, 132: 125–138.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.