×

zbMATH — the first resource for mathematics

On the dynamics of a shock-bubble interaction. (English) Zbl 0877.76046
We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogeneity. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions and reflections of acoustic fronts at the bubble interface. Specifically, we have reproduced the experiment: a Mach 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or refrigerant 22.

MSC:
76M20 Finite difference methods applied to problems in fluid mechanics
76L05 Shock waves and blast waves in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1002/fld.1650180603 · Zbl 0794.76061
[2] DOI: 10.1006/jcph.1994.1080 · Zbl 0811.76044
[3] DOI: 10.1137/0729092 · Zbl 0764.76032
[4] Hou, Math. Comput. 62 pp 497– (1994)
[5] Zwas, J. Comput. Phys. 12 pp 179– (1973)
[6] DOI: 10.1007/BF01414904 · Zbl 0825.76402
[7] DOI: 10.1017/S0022112094003307 · Zbl 0800.76385
[8] DOI: 10.1017/S0022112091001623
[9] Yang, AIAA J. 31 pp 854– (1993)
[10] DOI: 10.1017/S0022112087002003
[11] DOI: 10.1017/S0022112058000495 · Zbl 0081.41501
[12] DOI: 10.1017/S0022112090002968
[13] DOI: 10.1017/S002211205700004X · Zbl 0078.40303
[14] DOI: 10.1137/0117039 · Zbl 0188.23101
[15] DOI: 10.1016/0045-7930(90)90005-I
[16] DOI: 10.1016/0196-8858(85)90019-3
[17] DOI: 10.1016/0167-2789(92)90228-F · Zbl 0779.76059
[18] DOI: 10.1017/S0022112088000904
[19] Meshkov, NASA Transl. 7 pp 159– (1970)
[20] Marble, AIAA Paper 7 pp 159– (1987)
[21] Lax, Commum. Pure Appl. Maths 7 pp 159– (1954)
[22] DOI: 10.1016/0021-9991(91)90253-H · Zbl 0725.76090
[23] DOI: 10.1137/0705041 · Zbl 0184.38503
[24] DOI: 10.1017/S0022112083002876 · Zbl 0555.76051
[25] DOI: 10.1016/0021-9991(84)90073-1 · Zbl 0536.65071
[26] DOI: 10.1017/S0022112088000771 · Zbl 0642.76080
[27] DOI: 10.1016/0021-9991(89)90035-1 · Zbl 0665.76070
[28] DOI: 10.1017/S0022112094001485
[29] DOI: 10.1017/S0022112085002695
[30] DOI: 10.1137/0915008 · Zbl 0793.65072
[31] Abgrall, La Recherche Aérospatiale 6 pp 31Р(1988)
[32] Richtmyer, Commun. Pure Appl. Maths 23 pp 297– (1960)
[33] DOI: 10.1017/S0022112078002475
[34] Quirk, Appl. Numer. Maths. 18 pp 555– (1996)
[35] DOI: 10.1017/S0022112078000981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.