zbMATH — the first resource for mathematics

A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. (English) Zbl 0876.73030
Summary: The conditions for the strong ellipticity of the equilibrium equations of compressible, isotropic, nonlinearly elastic solids are expressed in terms of the stored-energy function regarded as a function of the principal stretches. The applicability of this reformulation is illustrated with two specific examples.

74B20 Nonlinear elasticity
Full Text: DOI
[1] H.C. Simpson and S.J. Spector, On copositive matrices and strong ellipticity for isotropic elastic materials. Arch. Rational Mech. Anal. 84 (1983) 55-68. · Zbl 0526.73026 · doi:10.1007/BF00251549
[2] P. Rosakis, Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Rational Mech. Anal. 109 (1990) 1-37. · Zbl 0731.73023 · doi:10.1007/BF00377977
[3] L.M. Zubov and A.N. Rudev, An effective method of verifying Hadamard’s condition for a non-linearly elastic compressible medium. J. Appl. Math. Mech. 52 (1992) 252-260. · Zbl 0785.73022 · doi:10.1016/0021-8928(92)90080-R
[4] J.K. Knowles and E. Sternberg, On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Rational Mech. Anal. 63 (1977) 321-336. · Zbl 0351.73061 · doi:10.1007/BF00279991
[5] R. Hill, On the theory of plane strain in finitely deformed compressible materials. Math. Proc. Camb. Phil. Soc. 86 (1979) 161-178. · Zbl 0435.73042 · doi:10.1017/S0305004100000724
[6] G. Aubert and R. Tahraoui, Sur la faible fermeture de certains ensembles de contraines en elasticite non-lineaire plane. Arch. Rational Mech. Anal. 97 (1987) 33-59. · Zbl 0619.73014 · doi:10.1007/BF00279845
[7] P.J. Davies, A simple derivation of necessary and sufficient conditions for the strong ellipticity of isotropic hyperelastic materials in plane strain. J. Elasticity 26 (1991) 291-296. · Zbl 0759.73013 · doi:10.1007/BF00041893
[8] F. John, Plane elastic waves of finite amplitude; Hadamard materials and harmonic materials. Commun. Pure Appl. Math. 19 (1966) 309-341. · Zbl 0139.43401 · doi:10.1002/cpa.3160190306
[9] S.A. Silling, Creasing singularities in compressible elastic materials. J. Appl. Mech. Trans. ASME 58 (1991) 70-74. · doi:10.1115/1.2897181
[10] Y. Wang and M. Aron, Radial deformations of cylindrical and spherical shells composed of a generalized Blatz-Ko material. J. Appl. Math. Mech. (ZAMM) (in press). · Zbl 0925.73564
[11] C. Truesdell and W. Noll, The Non-linear Field Theories of Mechanics, Handbuch der Physik, Volume III/3. Springer-Verlag, Berlin, Heidelberg, New York (1965). · Zbl 0779.73004
[12] R. Abeyaratne and C.O. Horgan, The pressurised hollow sphere problem in finite elastostatics for a class of compressible materials. Int. J. Solids Structures 20 (1984) 715-723. · Zbl 0546.73033 · doi:10.1016/0020-7683(84)90060-X
[13] J.K. Knowles and E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material. J. Elasticity 5 (1975) 341-361. · Zbl 0323.73010 · doi:10.1007/BF00126996
[14] M. Aron and S. Aizicovici, Two new universal relations in nonlinear elasticity and some related matters. J. Appl. Mech. Trans. ASME 61 (1994) 784-787. · Zbl 0827.73008 · doi:10.1115/1.2901555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.