×

zbMATH — the first resource for mathematics

A computational approach to ductile crack growth under large scale yielding conditions. (English) Zbl 0875.73192

MSC:
74R99 Fracture and damage
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] ASTM, E 1152-87 standard test method for determining J-R curves, ()
[2] Becker, R.; Needleman, A.; Suresh, S.; Tvergaard, V.; Vasudevan, A.K., An analysis of ductile failure by grain boundary void growth, Acta metall., 37, 99-120, (1989)
[3] Bethmont, M.; Rousselier, G.; Kussmaul, K.; Sauter, A.; Jovanovic, A., The local approach of fracture and its application to a thermal shock experiment, Nucl. engng design, 119, 249-261, (1990)
[4] Bilby, B.A.; Howard, I.C.; Li, Z.H., Prediction of the first spinning cylinder test using ductile damage theory, Fatigue fract. engng mater. struct., 16, 1-20, (1993)
[5] Brocks, W.; Klingbeil Kunecke, D.; Sun, D.-Z., Application of the Gurson model to ductile tearing resistance, ()
[6] Budiansky, B.; Summer, E.E., On size effects in plane stress crack-growth resistance, (), 9-11 Sept, 1985
[7] Drugan, W.J.; Rice, J.R.; Sham, T.-L., Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids, J. mech. phys. solids, 30, 447-473, (1982) · Zbl 0496.73086
[8] Ernst, H.A., Further developments on the modified J-integral, (), 306-319
[9] Gurson, A.L., Continuum theory of ductile rupture by void nucleation and growth: part I—yield criteria and flow rules for porous ductile media, J. engng mater. technol., 99, 2-15, (1977)
[10] Hancock, J.W.; Reuter, W.G.; Parks, D.M., Constraint and toughness parameterized by T, (), 21-40
[11] Hellman, D.; Schwalbe, K.H., Geometry and size effects on J-R and δ-R curves under plane stress conditions, (), 577-605
[12] Hermann, L.; Rice, J.R., Comparison of theory and experiment for elastic-plastic plane strain crack growth, Metal sci., 14, 285-291, (1980)
[13] Joyce, J.A.; Davis, D.A.; Hackett, E.M.; Hays, R.A., Application of the J-integral and the modified J-integral to cases of large crack extension, (), 85-105
[14] Joyce, J.A.; Hackett, E.M., Development of an engineering definition of the extent of J-controlled crack growth, (), 233-249
[15] Joyce, J.A.; Link, R.E., Effects of constraint on upper shelf fracture toughness, ()
[16] Kanninen, M.F.; Rybicki, E.F.; Stonesifer, R.B.; Broek, D.; Rosenfield, A.; Marshall, C.W.; Hahn, G.T., Elastic-plastic fracture mechanics for two dimensional stable crack growth and instability problems, (), 121-150
[17] Li, Z.H.; Bilby, B.A.; Howard, I.C., A study of the internal parameters of ductile damage theory, Fatigue fract. engng mater. struct., (1993), (to be published)
[18] McClintock, F.A., Plasticity aspects of fracture, (), 47-225
[19] McMeeking, R.M., Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture, J. mech. phys. solids, 25, 357-391, (1977)
[20] Mudry, F.; di Rienzo, F.; Pineau, A., Numerical comparison of global and local fracture criteria in CT and CCP specimens, (), 24-39
[21] Needleman, A.; Tvergaard, V., An analysis of ductile rupture modes at a crack tip, J. mech. phys. solids, 35, 151-183, (198) · Zbl 0601.73106
[22] Newman, J.C.; Dawicke, D.S.; Sutton, M.A.; Bigelow, C.A., A fracture criterion for widespread cracking in thindashsheet aluminum alloys, ()
[23] Rousselier, G., Ductile fracture models and their potential in local approach of fracture, Nucl. engng design, 105, 97-111, (1987)
[24] Rousselier, G.; Devaux, J.-C.; Mottet, G.; Devesa, G., A methodology for ductile fracture analysis based on damage mechanics: an illustration of a local approach of fracture, (), 332-354
[25] Rousselier, G.; Devesa, G.; Bethmont, M., Effect of specimen geometry on J-resistance curves in near small scale yielding conditions, ()
[26] Shih, C.F.; deLorenzi, H.G.; Andrews, W.R., Studies on crack initiation and stable crack growth, (), 65-120
[27] Shih, C.F.; Xia, L., Modeling crack growth resistance using computational cells with microstructurally-based length scales, () · Zbl 0879.73047
[28] Sun, D.-Z.; Schmitt, W., Application of micromechanical models to the analysis of ductile fracture resistance behaviour, (), 275-286
[29] Tvergaard, V., Influence of void nucleation on ductile shear fracture at a free surface, J. mech. phys. solids, 30, 399-425, (1982) · Zbl 0496.73087
[30] Tvergaard, V., Material failure by void growth to coalescence, (), 83-151 · Zbl 0728.73058
[31] Tvergaard, V.; Hutchinson, J.W., The relation between crack growth resistance and fracture process parameters in elastic-plastic solids, J. mech. phys. solids, 40, 1377-1397, (1992) · Zbl 0775.73218
[32] Tvergaard, V.; Hutchinson, J.W., Effect of T-stress on mode I crack growth resistance in a ductile solid, Int. J. solids struct., 31, 823-833, (1994) · Zbl 0800.73334
[33] Tvergaard, V.; Needleman, A., Analysis of the cup-cone fracture in a round tensile bar, Acta metall., 32, 157-169, (1984)
[34] Xia, L.; Shih, C.F., Ductile crack growth—I. A numerical study using computational cells with microstructurally-based length scales, J. mech. phys. solids, 43, 233-259, (1995) · Zbl 0879.73047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.