×

zbMATH — the first resource for mathematics

Curve estimation when the design density is low. (English) Zbl 0874.62037
Summary: In problems where a high-dimensional design is projected into a lower number of dimensions, the density of the new design is typically not bounded away from zero over its support, even if the original one was. Contexts where this problem arises include projection pursuit regression, estimation in single index models and application of the projection-slice method of Radon transform inversion. Theoretical work in these settings typically involves ignoring data toward the ends of the support of the projected design, but in practice that waste of information is not an attractive option.
Motivated by these difficulties, we analyze the way in which local linear smoothing is affected by unboundedly sparse design and apply the conclusions of that study to develop empirical, adaptive bandwidth choice methods. Our results even add to knowledge in the familiar case of a design density that is bounded away from zero, where they provide adaptive bandwidth selectors that are optimal right to the ends of the design interval.

MSC:
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brillinger, D. R. (1983). A generalized linear model with ”Gaussian” regressor variables. In A Festschrift for Erich Lehmann (P. J. Bickel, K. A. Doksum and J. L. Hodges, eds.) 97-114. Wadsworth, Belmont, CA. · Zbl 0519.62050
[2] Buckley, M. J. and Eagleson, G. K. (1989). A graphical method for estimating the residual variance in nonparametric regression. Biometrika 76 203-210. JSTOR: · Zbl 0671.62046 · doi:10.1093/biomet/76.2.203 · links.jstor.org
[3] Buckley, M. J., Eagleson, G. K. and Silverman, B. W. (1988). The estimation of residual variance in nonparametric regression. Biometrika 75 189-199. JSTOR: · Zbl 0639.62032 · doi:10.1093/biomet/75.2.189 · links.jstor.org
[4] Carter, C. K. and Eagleson, G. K. (1992). A comparison of variance estimators in nonparametric regression. J. Roy. Statist. Soc. Ser. B 54 773-780. JSTOR: · links.jstor.org
[5] Cheng, M. Y., Fan, J. and Marron, J. S. (1996). Minimax efficiency of local poly nomial fit estimators at boundaries. Mimeo Series No. 2098, Institute of Statistics, Univ. North Carolina.
[6] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. J. Amer. Statist. Assoc. 74 829-836. · Zbl 0423.62029 · doi:10.2307/2286407
[7] Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.
[8] Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. J. Amer. Statist. Assoc. 83 596-610. · Zbl 1248.62054
[9] Cleveland, W. S. and Grosse, E. H. (1991). Computational methods for local regression. Statist. and Computing 1 47-62.
[10] Cleveland, W. S. and Loader, C. (1996). Smoothing by local regression: principles and methods. In Statistical Theory and Computational Aspects of Smoothing (W. Härdle and M. Schmlick, eds.) 10-49. physica, Heidelberg.
[11] Fan, J. (1992). Design-adaptive nonparametric regression. J. Amer. Statist. Assoc. 87 998-1004. JSTOR: · Zbl 0850.62354 · doi:10.2307/2290637 · links.jstor.org
[12] Fan, J. (1993). Local linear smoothers and their minimax efficiency. Ann. Statist. 21 196-216. · Zbl 0773.62029 · doi:10.1214/aos/1176349022
[13] Fan, J. and Gijbels, I. (1995). Data-driven bandwidth selection in local poly nomial fitting: variable bandwidth and spatial adaptation. J. Roy. Statist. Soc. Ser. B 57 371-394. JSTOR: · Zbl 0813.62033 · links.jstor.org
[14] Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression. J. Amer. Statist. Assoc. 76 817-823. JSTOR: · doi:10.2307/2287576 · links.jstor.org
[15] Gasser, T., Kneip, A. and K öhler, W. (1991). A flexible and fast method for automatic smoothing. J. Amer. Statist. Assoc. 86 643-652. JSTOR: · Zbl 0733.62047 · doi:10.2307/2290393 · links.jstor.org
[16] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633. JSTOR: · Zbl 0649.62035 · doi:10.1093/biomet/73.3.625 · links.jstor.org
[17] Hall, P. and Hey de, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045
[18] Hall, P., Kay, J. W. and Titterington, D. M. (1990). Asy mptotically optimal difference-based estimation of variance in nonparametric regression. Biometrika 77 521-528. JSTOR: · Zbl 1377.62102 · doi:10.1093/biomet/77.3.521 · links.jstor.org
[19] Hall, P. and Marron, J. S. (1990). On variance estimation in nonparametric regression. Biometrika 77 415-419. JSTOR: · Zbl 0711.62035 · doi:10.1093/biomet/77.2.415 · links.jstor.org
[20] Hall, P., Marron, J. S., Neumann, M. H. and Titterington, D. M. (1995). On local linear smoothing when the design density is low. Research Report SRR027-95, Centre for Mathematics and Its Applications, Australian National Univ., Canberra.
[21] Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. Ann. Statist. 21 157-178. · Zbl 0770.62049 · doi:10.1214/aos/1176349020
[22] Hastie, T. and Loader, C. (1993). Local regression: automatic kernel carpentry. Statist. Sci. 8 120-143.
[23] Nicholls, D. F. and Pagan, A. R. (1985). Varying coefficient regression. In Handbook of Statistics 5 (E. J. Hannan, P. R. Krishnaiah and M. M. Rao, eds.) 413-449. North-Holland, Amsterdam.
[24] Raj, B. and Ullah, A. (1981). Econometrics: A Varying Coefficients Approach. Croom-Helm, London. · Zbl 0506.62097
[25] HALL, MARRON, NEUMANN AND TITTERINGTON Ruppert, D. and Wand, M. P. (1994). Multivariate locally weighted least squares regression. Ann. Statist. 22 1346-1370. · Zbl 0821.62020 · doi:10.1214/aos/1176325632
[26] Seifert, B., Gasser, T. and Wolf, A. (1993). Nonparametric estimation of residual variance revisited. Biometrika 80 373-383. JSTOR: · Zbl 0799.62038 · doi:10.1093/biomet/80.2.373 · links.jstor.org
[27] Seifert, B. and Gasser, T. (1996). Finite sample analysis of local poly nomials: analysis and solutions. In Statistical Theory and Computational Aspects of Smoothing (W. Härdle and M. Schmlick, eds.) 50-79. physica, Heidelberg. · Zbl 0871.62042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.