×

Symmetric Gibbs measures. (English) Zbl 0873.28008

Summary: We prove that certain Gibbs measures on subshifts of finite type are nonsingular and ergodic for certain countable equivalence relations, including the orbit relation of the adic transformation (the same as equality after a permutation of finitely many coordinates). The relations we consider are defined by cocycles taking values in groups, including some nonabelian ones. This generalizes (half of) the identification of the invariant ergodic probability measures for the Pascal adic transformation as exactly the Bernoulli measures – a version of de Finetti’s theorem. Generalizing the other half, we characterize the measures on subshifts of finite type that are invariant under both the adic and the shift as the Gibbs measures whose potential functions depend on only a single coordinate. There are connections with and implications for exchangeability, ratio limit theorems for transient Markov chains, interval splitting procedures, ‘canonical’ Gibbs states, and the triviality of remote sigma-fields finer than the usual tail field.

MSC:

28D05 Measure-preserving transformations
60G09 Exchangeability for stochastic processes
60J05 Discrete-time Markov processes on general state spaces
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B05 Classical equilibrium statistical mechanics (general)
37E99 Low-dimensional dynamical systems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] C. O. Acuna, Texture modeling using Gibbs distributions, Graphical Models and Image Processing 54 (1992), 210-222.
[2] David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII — 1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1 – 198. · Zbl 0562.60042
[3] Leslie K. Arnold, On \?-finite invariant measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 85 – 97. · Zbl 0196.18402
[4] David Blackwell and David Freedman, The tail \?-field of a Markov chain and a theorem of Orey, Ann. Math. Statist. 35 (1964), 1291 – 1295. · Zbl 0127.35204
[5] Rufus Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin-New York, 1975. · Zbl 0308.28010
[6] Roger Butler and Klaus Schmidt, An information cocycle for groups of nonsingular transformations, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 3, 347 – 360. · Zbl 0557.28019
[7] P. Diaconis and D. Freedman, de Finetti’s theorem for Markov chains, Ann. Probab. 8 (1980), no. 1, 115 – 130. · Zbl 0426.60064
[8] P. Diaconis and D. Freedman, Partial exchangeability and sufficiency, Statistics: applications and new directions (Calcutta, 1981) Indian Statist. Inst., Calcutta, 1984, pp. 205 – 236.
[9] E. B. Dynkin, Sufficient statistics and extreme points, Ann. Probab. 6 (1978), no. 5, 705 – 730. · Zbl 0403.62009
[10] Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289 – 324. , https://doi.org/10.1090/S0002-9947-1977-0578656-4 Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325 – 359. · Zbl 0369.22009
[11] J. Feldman, C. E. Sutherland, and R. J. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 239 – 269. · Zbl 0654.22003
[12] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intelligence 6 (1984), 721-741. · Zbl 0573.62030
[13] Hans-Otto Georgii, Canonical Gibbs states, their relation to Gibbs states, and applications to two-valued Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), no. 4, 277 – 300. · Zbl 0296.60075
[14] Hans-Otto Georgii, Canonical Gibbs measures, Lecture Notes in Mathematics, vol. 760, Springer, Berlin, 1979. Some extensions of de Finetti’s representation theorem for interacting particle systems. · Zbl 0409.60094
[15] T. Giordano, I. Putnam and C. Skau, Topological orbit equivalence and \(C^*\)-crossed products, J. Reine Angew. Math. 469 (1995), 51-111. CMP 96:5 · Zbl 0834.46053
[16] L. A. Grigorenko, \?-algebra of symmetric events for a countable Markov chain, Teor. Veroyatnost. i Primenen. 24 (1979), no. 1, 198 – 204 (Russian, with English summary). · Zbl 0396.60061
[17] Arshag Hajian, Yuji Ito, and Shizuo Kakutani, Invariant measures and orbits of dissipative transformations, Advances in Math. 9 (1972), 52 – 65. · Zbl 0236.28010
[18] G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system, Math. Systems Theory 3 (1969), 320 – 375. · Zbl 0182.56901
[19] E. Hewitt and L. J. Savage, Symmetric measures on Cartesian products, Trans. Amer. Math. Soc. 80 (1955), 470-501. · Zbl 0066.29604
[20] Thomas Höglund, Central limit theorems and statistical inference for finite Markov chains, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 29 (1974), 123 – 151. · Zbl 0283.60069
[21] Richard Isaac, Generalized Hewitt-Savage theorems for strictly stationary processes, Proc. Amer. Math. Soc. 63 (1977), no. 2, 313 – 316. · Zbl 0366.60049
[22] Richard Isaac, Note on a paper of J. L. Palacios: ”A correction note on: ’Generalized Hewitt-Savage theorems for strictly stationary processes’ [Proc. Amer. Math. Soc. 63 (1977), no. 2, 313 – 316; MR0501304 (58 #18695)] by Isaac” [ibid. 88 (1983), no. 1, 138 – 140; MR0691294 (86a:60054)], Proc. Amer. Math. Soc. 101 (1987), no. 3, 529. · Zbl 0366.60049
[23] Shunji Ito, A construction of transversal flows for maximal Markov automorphisms, Tokyo J. Math. 1 (1978), no. 2, 305 – 324. · Zbl 0446.28017
[24] Shizuo Kakutani, A problem of equidistribution on the unit interval [0,1], Measure theory (Proc. Conf., Oberwolfach, 1975) Springer, Berlin, 1976, pp. 369 – 375. Lecture Notes in Math., Vol. 541.
[25] Masasi Kowada, Spectral type of one-parameter group of unitary operators with transversal group, Nagoya Math. J. 32 (1968), 141 – 153. · Zbl 0194.16501
[26] Masasi Kowada, The orbit-preserving transformation groups associated with a measurable flow, J. Math. Soc. Japan 24 (1972), 355 – 373. · Zbl 0234.28009
[27] Wolfgang Krieger, On the finitary isomorphisms of Markov shifts that have finite expected coding time, Z. Wahrsch. Verw. Gebiete 65 (1983), no. 2, 323 – 328. · Zbl 0516.60075
[28] Izumi Kubo, Quasi-flows, Nagoya Math. J. 35 (1969), 1 – 30. · Zbl 0209.08903
[29] E. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. für Math. 44 (1852), 115-116. · ERAM 044.1198cj
[30] Steffen L. Lauritzen, Extremal families and systems of sufficient statistics, Lecture Notes in Statistics, vol. 49, Springer-Verlag, New York, 1988. · Zbl 0681.62009
[31] François Ledrappier, Principe variationnel et systèmes dynamiques symboliques, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 30 (1974), 185 – 202. · Zbl 0276.93004
[32] Giorgio Letta, Sur les théorèmes de Hewitt-Savage et de de Finetti, Séminaire de Probabilités, XXIII, Lecture Notes in Math., vol. 1372, Springer, Berlin, 1989, pp. 531 – 535 (French). · Zbl 0731.60029
[33] A. N. Livshits, Sufficient conditions for weak mixing of substitutions and of stationary adic transformations, Mat. Zametki 44 (1988), no. 6, 785 – 793, 862 (Russian); English transl., Math. Notes 44 (1988), no. 5-6, 920 – 925 (1989). · Zbl 0713.28011
[34] A. A. Lodkin and A. M. Vershik, Approximation for actions of amenable groups and transversal automorphisms, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 331 – 346. · Zbl 0584.28008
[35] E. Lucas, Théorie des fonctions numériques simplement périodiques, Amer. J. Math. 1 (1878), 184-240. · JFM 10.0134.05
[36] Richard A. Olshen, The coincidence of measure algebras under an exchangeable probability., Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 18 (1971), 153 – 158. · Zbl 0206.18201
[37] Richard Olshen, A note on exchangable sequences, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 317 – 321. · Zbl 0265.60006
[38] José Luis Palacios, A correction note on: ”Generalized Hewitt-Savage theorems for strictly stationary processes” [Proc. Amer. Math. Soc. 63 (1977), no. 2, 313 – 316; MR0501304 (58 #18695)] by R. Isaac, Proc. Amer. Math. Soc. 88 (1983), no. 1, 138 – 140.
[39] José Luis Palacios, The exchangeable sigma-field of Markov chains, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 2, 177 – 186. , https://doi.org/10.1007/BF02450280 José Luis Palacios, The sigma-field of exchangeable events of a homogeneous recurrent finite Markov chain, Acta Cient. Venezolana 35 (1984), no. 3-4, 173 – 176 (English, with Spanish summary). · Zbl 0557.60050
[40] William Parry and Selim Tuncel, Classification problems in ergodic theory, London Mathematical Society Lecture Note Series, vol. 67, Cambridge University Press, Cambridge-New York, 1982. Statistics: Textbooks and Monographs, 41. · Zbl 0487.28014
[41] Ronald Pyke, The asymptotic behavior of spacings under Kakutani’s model for interval subdivision, Ann. Probab. 8 (1980), no. 1, 157 – 163. · Zbl 0426.60031
[42] Paul Ressel, De Finetti-type theorems: an analytical approach, Ann. Probab. 13 (1985), no. 3, 898 – 922. · Zbl 0579.60012
[43] David Ruelle, Statistical mechanics on a compact set with \?^{\?} action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237 – 251. · Zbl 0278.28012
[44] C. Ryll-Nardzewski, Stationary sequences of random variables and the de Finetti’s equivalence, Colloq. Math. 4 (1957), 149-156. · Zbl 0077.12302
[45] Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Company of India, Ltd., Delhi, 1977. Macmillan Lectures in Mathematics, Vol. 1. · Zbl 0421.28017
[46] Klaus Schmidt, Hyperbolic structure preserving isomorphisms of Markov shifts, Israel J. Math. 55 (1986), no. 2, 213 – 228. · Zbl 0615.28011
[47] Klaus Schmidt, Algebraic ideas in ergodic theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. · Zbl 0719.28006
[48] Ja. G. Sinai, Probabilistic ideas in ergodic theory, Amer. Math. Soc. Transls., Ser. 2, 31 (1963), 62-84. · Zbl 0141.14705
[49] Eric V. Slud, A note on exchangeable sequences of events, Rocky Mountain J. Math. 8 (1978), no. 3, 439 – 442. · Zbl 0387.60008
[50] B. Solomyak, On the spectral theory of adic transformations, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 217 – 230. · Zbl 0770.28012
[51] Richard Leslie Thompson, Equilibrium states on thin energy shells, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathematical Society, No. 150. · Zbl 0327.60068
[52] A. M. Veršik, A description of invariant measures for actions of certain infinite-dimensional groups, Dokl. Akad. Nauk SSSR 218 (1974), 749 – 752 (Russian).
[53] A. M. Vershik, Uniform algebraic approximation of shift and multiplication operators, Dokl. Akad. Nauk SSSR 259 (1981), no. 3, 526 – 529 (Russian).
[54] -, A theorem on the Markov periodic approximation in ergodic theory, J. Soviet Math. 28 (1985), 667-673.
[55] A. M. Vershik and A. N. Livshits, Adic models of ergodic transformations, spectral theory, substitutions, and related topics, Representation theory and dynamical systems, Adv. Soviet Math., vol. 9, Amer. Math. Soc., Providence, RI, 1992, pp. 185 – 204. · Zbl 0770.28013
[56] Jan von Plato, The significance of the ergodic decomposition of stationary measures for the interpretation of probability, Synthese 53 (1982), no. 3, 419 – 432. · Zbl 0498.60001
[57] Peter Walters, Ruelle’s operator theorem and \?-measures, Trans. Amer. Math. Soc. 214 (1975), 375 – 387. · Zbl 0331.28013
[58] Robert J. Zimmer, Extensions of ergodic group actions, Illinois J. Math. 20 (1976), no. 3, 373 – 409. · Zbl 0334.28015
[59] Robert J. Zimmer, Cocycles and the structure of ergodic group actions, Israel J. Math. 26 (1977), no. 3 – 4, 214 – 220. · Zbl 0352.22007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.