×

Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: Random matrix approach for systems with broken time-reversal invariance. (English) Zbl 0872.58072

Summary: Assuming the validity of random matrices for describing the statistics of a closed chaotic quantum system, we study analytically some statistical properties of the \(S\)-matrix characterizing scattering in its open counterpart. In the first part of the paper we attempt to expose systematically ideas underlying the so-called stochastic (Heidelberg) approach to chaotic quantum scattering. Then we concentrate on systems with broken time-reversal invariance coupled to continua via \(M\) open channels; \(a=1,2,\dots,M\). A physical realization of this case corresponds to the chaotic scattering in ballistic microstructures pierced by a strong enough magnetic flux. By using the supersymmetry method we derive an explicit expression for the density of \(S\)-matrix poles (resonances) in the complex energy plane. When all scattering channels are considered to be equivalent our expression describes a crossover from the \(\chi^2\) distribution of resonance widths (regime of isolated resonances) to a broad power-like distribution typical for the regime of overlapping resonances. The first moment is found to reproduce exactly the Moldauer-Simonius relation between the mean resonance width and the transmission coefficient. Under the same assumptions we derive an explicit expression for the parametric correlation function of densities of eigenphases \(\theta_a\), of the \(S\)-matrix (taken modulo \(2\pi\)). We use it to find the distribution of derivatives \(\tau_a=\partial\theta_a/\partial E\) of these eigenphases with respect to the energy (“partial delay times”) as well as with respect to an arbitrary extremal parameter. We also find the parametric correlations of the Wigner-Smith time delay \(\tau_w(E)=(1/M)\Sigma_a\partial\theta_a/\partial E\) at two different energies \(E-\Omega/2\) and \(E+\Omega/2\) as well as at two different values of the external parameter. The relation between our results and those following from the semiclassical approach as well as the relevance to experiments are briefly discussed.

MSC:

58Z05 Applications of global analysis to the sciences
81Q50 Quantum chaos
81U20 \(S\)-matrix theory, etc. in quantum theory
15B52 Random matrices (algebraic aspects)
81Q20 Semiclassical techniques, including WKB and Maslov methods applied to problems in quantum theory
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1063/1.165930
[2] DOI: 10.1063/1.165994
[3] DOI: 10.1103/PhysRevLett.76.1699
[4] DOI: 10.1103/PhysRevLett.76.1699
[5] DOI: 10.1103/PhysRevLett.76.1699
[6] DOI: 10.1103/PhysRevB.50.17721
[7] DOI: 10.1103/PhysRevLett.67.785
[8] DOI: 10.1103/PhysRevLett.67.785
[9] DOI: 10.1103/PhysRevLett.75.53
[10] DOI: 10.1103/PhysRevLett.65.3072
[11] DOI: 10.1103/PhysRevLett.74.2666
[12] DOI: 10.1103/PhysRevLett.74.2666
[13] DOI: 10.1016/0375-9474(93)90097-H
[14] DOI: 10.1016/0375-9474(93)90097-H
[15] DOI: 10.1016/0375-9474(96)00117-0
[16] DOI: 10.1088/0034-4885/54/4/003
[17] DOI: 10.1209/0295-5075/31/5-6/001
[18] DOI: 10.1209/0295-5075/31/5-6/001
[19] DOI: 10.1088/0953-4075/27/13/013
[20] DOI: 10.1088/0953-4075/28/15/005
[21] DOI: 10.1103/PhysRevA.47.3571
[22] DOI: 10.1016/0378-4371(95)00121-M
[23] DOI: 10.1016/0378-4371(95)00121-M
[24] DOI: 10.1016/0378-4371(95)00121-M
[25] DOI: 10.1103/PhysRevLett.64.241 · Zbl 1050.82528
[26] DOI: 10.1103/PhysRevLett.64.241 · Zbl 1050.82528
[27] DOI: 10.1063/1.165925
[28] DOI: 10.1016/0003-4916(91)90372-F · Zbl 0738.35052
[29] DOI: 10.1016/0003-4916(74)90421-7 · Zbl 0281.35029
[30] DOI: 10.1103/RevModPhys.53.385
[31] DOI: 10.1098/rspa.1985.0078 · Zbl 0875.35061
[32] Muzykantsky B. A., JETP Lett. 62 pp 76– (1995)
[33] DOI: 10.1103/PhysRevLett.76.3947
[34] DOI: 10.1103/PhysRevLett.77.1472 · Zbl 1182.81034
[35] Livšiĉ M. S., Sov. Phys. JETP 4 pp 91– (1957)
[36] Kobzarev I. Yu., Yad. Phys. 10 pp 864– (1969)
[37] DOI: 10.1007/BF01036264
[38] DOI: 10.1007/BF01036264
[39] DOI: 10.1007/BF01036264
[40] DOI: 10.1007/BF01036264
[41] DOI: 10.1007/BF01036264
[42] Makarov K., St. Petersburg Math. J. 4 pp 967– (1993)
[43] DOI: 10.1016/0370-1573(85)90070-5
[44] DOI: 10.1016/0003-4916(58)90007-1 · Zbl 0083.44202
[45] DOI: 10.1016/0003-4916(85)90080-6
[46] DOI: 10.1088/0305-4470/25/6/010 · Zbl 0747.58041
[47] DOI: 10.1088/0305-4470/25/6/010 · Zbl 0747.58041
[48] Brouwer P. W., Phys. Rev. B 51 pp 16875– (1995)
[49] DOI: 10.1103/PhysRevB.51.7734
[50] DOI: 10.1103/PhysRevB.51.7734
[51] DOI: 10.1103/PhysRevE.50.R659
[52] DOI: 10.1146/annurev.pc.33.100182.001255
[53] DOI: 10.1146/annurev.pc.33.100182.001255
[54] DOI: 10.1016/0960-0779(94)E0064-V · Zbl 0900.81042
[55] DOI: 10.1007/BF01290775
[56] DOI: 10.1007/BF01290775
[57] DOI: 10.1007/BF01290775
[58] DOI: 10.1103/PhysRevA.46.6056
[59] DOI: 10.1103/PhysRevA.46.6056
[60] DOI: 10.1007/BF01470925
[61] DOI: 10.1063/1.471185
[62] DOI: 10.1016/0375-9474(94)00460-5
[63] DOI: 10.1088/0305-4470/28/10/023
[64] DOI: 10.1088/0305-4470/28/10/023
[65] DOI: 10.1016/0375-9601(93)90280-D
[66] DOI: 10.1016/0375-9601(93)90280-D
[67] DOI: 10.1016/0301-0104(94)00187-1
[68] DOI: 10.1063/1.471587
[69] DOI: 10.1063/1.471587
[70] DOI: 10.1103/PhysRevLett.76.4891
[71] DOI: 10.1121/1.415881
[72] DOI: 10.1103/PhysRevA.54.2066
[73] DOI: 10.1103/PhysRevLett.61.3
[74] DOI: 10.1103/PhysRevLett.68.3468
[75] DOI: 10.1103/PhysRevB.51.1714
[76] DOI: 10.1134/1.567120
[77] DOI: 10.1134/1.567120
[78] DOI: 10.1088/0951-7715/5/5/003 · Zbl 0770.58043
[79] DOI: 10.1088/0305-4470/29/5/003 · Zbl 0925.81405
[80] DOI: 10.1088/0305-4470/29/5/003 · Zbl 0925.81405
[81] DOI: 10.1016/0375-9601(96)00204-6
[82] DOI: 10.1051/jp1:1995128
[83] DOI: 10.1103/RevModPhys.66.217
[84] DOI: 10.1002/andp.19955070707 · Zbl 0852.47037
[85] DOI: 10.1002/andp.19955070707 · Zbl 0852.47037
[86] DOI: 10.1103/PhysRevB.51.4727
[87] DOI: 10.1103/PhysRevB.51.4727
[88] DOI: 10.1103/PhysRevB.51.4727
[89] DOI: 10.1103/PhysRevB.51.4727
[90] DOI: 10.1103/PhysRev.118.349 · Zbl 0092.19001
[91] DOI: 10.1103/PhysRev.118.349 · Zbl 0092.19001
[92] DOI: 10.1016/0003-4916(92)90359-T · Zbl 0767.58050
[93] DOI: 10.1016/0370-2693(77)90058-2
[94] DOI: 10.1016/0370-2693(77)90058-2
[95] DOI: 10.1016/0370-2693(77)90058-2
[96] DOI: 10.1016/0370-2693(77)90058-2
[97] DOI: 10.1016/0370-2693(77)90058-2
[98] Lyuboshits L., Yad. Fiz. 37 pp 292– (1983)
[99] Lyuboshits L., Sov. J. Nucl. Phys. 37 pp 174– (1983)
[100] DOI: 10.1007/BF01559756
[101] DOI: 10.1103/PhysRevE.49.130
[102] DOI: 10.1016/0167-2789(95)00185-7 · Zbl 0878.60087
[103] DOI: 10.1007/BF01307664
[104] DOI: 10.1007/BF01307664
[105] DOI: 10.1103/PhysRevLett.77.3005
[106] DOI: 10.1209/0295-5075/15/7/003
[107] DOI: 10.1209/0295-5075/15/7/003
[108] DOI: 10.1103/PhysRevLett.76.4709
[109] DOI: 10.1103/PhysRevB.53.13024
[110] DOI: 10.1063/1.531668 · Zbl 0891.47049
[111] DOI: 10.1103/PhysRevLett.60.1895
[112] DOI: 10.1088/0305-4470/18/7/018
[113] DOI: 10.1080/00018738300101531
[114] DOI: 10.1016/S0375-9601(96)00904-8 · Zbl 0962.82501
[115] DOI: 10.1103/PhysRevB.34.6394
[116] DOI: 10.1103/PhysRevB.34.6394
[117] DOI: 10.1103/PhysRevC.11.426
[118] DOI: 10.1016/0370-2693(74)90040-9
[119] DOI: 10.1016/0370-2693(74)90040-9
[120] DOI: 10.1016/0370-2693(78)90294-0
[121] DOI: 10.1103/PhysRevA.43.4517
[122] DOI: 10.1103/PhysRevB.46.4332
[123] DOI: 10.1209/0295-5075/27/5/001
[124] DOI: 10.1103/PhysRevLett.73.2688
[125] DOI: 10.1007/s002570050018
[126] DOI: 10.1007/s002570050018
[127] DOI: 10.1103/PhysRevE.54.2438
[128] DOI: 10.2307/1969415 · Zbl 0048.31403
[129] DOI: 10.2307/1969415 · Zbl 0048.31403
[130] DOI: 10.1088/0305-4470/27/18/025 · Zbl 0843.58088
[131] DOI: 10.1006/aphy.1995.1089
[132] DOI: 10.1103/PhysRevB.53.9968
[133] DOI: 10.1088/0305-4470/19/5/019
[134] DOI: 10.1088/0305-4470/17/18/013
[135] DOI: 10.1088/0305-4470/25/6/011 · Zbl 0747.58043
[136] DOI: 10.1088/0951-7715/8/6/013 · Zbl 0834.60105
[137] DOI: 10.1088/0951-7715/8/2/005 · Zbl 0822.58034
[138] DOI: 10.1088/0951-7715/8/2/005 · Zbl 0822.58034
[139] DOI: 10.1103/PhysRevB.50.18275
[140] DOI: 10.1103/PhysRevB.50.18275
[141] DOI: 10.1103/PhysRevB.50.18275
[142] DOI: 10.1103/PhysRevB.50.18275
[143] DOI: 10.1103/PhysRevB.53.16408
[144] DOI: 10.1007/BF02183646 · Zbl 1081.81527
[145] DOI: 10.1007/BF02183646 · Zbl 1081.81527
[146] DOI: 10.1007/BF02183646 · Zbl 1081.81527
[147] DOI: 10.1103/PhysRevB.53.3638
[148] DOI: 10.1088/0953-8984/7/31/012
[149] DOI: 10.1088/0953-8984/7/31/012
[150] DOI: 10.1088/0953-8984/7/31/012
[151] DOI: 10.1103/PhysRevE.48.R2347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.