×

zbMATH — the first resource for mathematics

Uniformly convex and uniformly smooth convex functions. (English) Zbl 0870.49010
The duality between the uniform smoothness of the convex function \(f\) and the uniform convexity of its conjugate \(g\) is studied in the framework of Banach spaces in metric duality. Several characterizations of these notions are given using the subdifferentials of \(f\) and \(g.\) The paper is much related to reviewer’s article [J. Math. Anal. Appl. 95, 344-374 (1983; Zbl 0519.49010)]. The reflexivity of the space and the interiority condition used in some implications of that paper are dropped and some proofs are simplified. Some results concerning maximal monotone operators are also obtained.

MSC:
49J52 Nonsmooth analysis
47H05 Monotone operators and generalizations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Asplund ( E. ) .- Fréchet Differentiability of convex functions , Acta Matematica 121 ( 1967 ), pp. 31 - 47 . MR 231199 | Zbl 0162.17501 · Zbl 0162.17501
[2] Asplund ( E. ) .- Positivity of duality mappings , Bull. Am. Math. Soc. 73 ( 1967 ), pp. 200 - 203 . Article | MR 206663 | Zbl 0149.36202 · Zbl 0149.36202
[3] Asplund ( E. ) and Rockafellar ( R.T. ) .- Gradients of convex functions , Trans. Am. Math. Soc. 139 ( 1969 ), pp. 443 - 467 . MR 240621 | Zbl 0181.41901 · Zbl 0181.41901
[4] Attouch ( H. ) and Wets ( R.J.-B. ) .- A quantitative approach via epigraphic distances to stability of strong local minimizers , Technical report No 87-01, Univ. of Perpignan ( 1987 ).
[5] Aubin ( J.-P. ) and Ekeland ( I. ) .- Nonlinear applied analysis , J. Wiley , New York ( 1984 ). MR 749753 | Zbl 0641.47066 · Zbl 0641.47066
[6] Auslender ( A. ) .- Optimisation - Méthodes numériques , Masson , Paris ( 1976 ). MR 441204 | Zbl 0326.90057 · Zbl 0326.90057
[7] Beauzamy ( B. ) .- Introduction to Banach spaces and their geometry , Mathematical Studies 68 , North-Holland , Amsterdam ( 1982 ). MR 670943 | Zbl 0491.46014 · Zbl 0491.46014
[8] Bishop ( E. ) and Phelps ( R.R. ) .- The support functionals of a convex set , In Convexity edited by P. Klee, Proc. Symp. Pure Math. 7 , Am. Math. Soc. Providence ( 1963 ), pp. 27 - 35 . MR 154092 | Zbl 0149.08601 · Zbl 0149.08601
[9] Bröndsted ( A. ) and Rockafellar ( R.T. ) .- On the subdifferentiability of convex functions , Proc. Am. Math. Soc. 16 ( 1965 ), pp. 605 - 611 . MR 178103 | Zbl 0141.11801 · Zbl 0141.11801
[10] Browder ( F.E. ) .- Problèmes non linéaires , Presses de l’Université de Montréal 15 ( 1966 ). Zbl 0153.17302 · Zbl 0153.17302
[11] Bynum ( J.C. ) .- Characterizations of uniform convexity , Pac. J. Math. 38 , No 3 ( 1971 ), pp. 577 - 581 . Article | MR 305034 | Zbl 0229.46019 · Zbl 0229.46019
[12] Ciarlet ( P.G. ) .- Introduction à l’analyse numérique matricielle et à l’optimisation , Masson , Paris ( 1982 ). MR 680778 | Zbl 0488.65001 · Zbl 0488.65001
[13] Cioranescu ( I. ) .- Duality mappings in the nonlinear functional analysis , Ed. Acad. R.S.R. , Bucharest ( 1974 ) (in Romanian). MR 383157 · Zbl 0297.47053
[14] Diestel ( J. ) .- Geometry of Banach spaces, selected topics , Lecture Notes in Mathematics 485 , Springer , Berlin ( 1975 ). MR 461094 | Zbl 0307.46009 · Zbl 0307.46009
[15] Donchev ( A.L. ) .- Perturbations, approximations and sensitivity analysis of optimal control systems , Springer Lecture Notes in Control 52 ( 1984 ). MR 790847 | Zbl 0512.49001 · Zbl 0512.49001
[16] Dunn ( J.C. ) .- Convexity, monotonicity and gradient processes in Hilbert spaces , J. Math. Anal. Appl. 53 ( 1976 ), pp. 145 - 158 . MR 388176 | Zbl 0321.49025 · Zbl 0321.49025
[17] Ekeland ( I. ) .- Two results in convex analysis, in ”Optimization and related fields ”, Ed. by R. Conti, E. de Giorgi and F. Giannessi, Lecture Notes in Mathematics 1190 , Springer Berlin ( 1986 ). MR 858352 | Zbl 0589.49007 · Zbl 0589.49007
[18] Figiel ( T. ) .- On the moduli of convexity and smoothness , Stud. Math. 56 ( 1976 ), pp. 121 - 155 . MR 425581 | Zbl 0344.46052 · Zbl 0344.46052
[19] Jeyakumar ( V. ) . - On subgradient duality with strong and weak convex functions , J. Austr. Math. Soc. 40 , Ser. A ( 1986 ), 143 - 152 . MR 817834 | Zbl 0598.90094 · Zbl 0598.90094
[20] Jeyakumar ( V. ) . - p-convexity and second order duality , Util. Math. 29 ( 1986 ), pp. 71 - 85 . MR 846192 | Zbl 0557.90080 · Zbl 0557.90080
[21] Karmanov ( V. ) .- Programmation Mathématique , French translation, Mir , Moscow ( 1975 ). Zbl 0379.90068 · Zbl 0379.90068
[22] Levitin ( E. ) and Poljak ( B. ), .- Minimization methods in the presence of constraints , Z. Vycisl. Mat. i. Fiz. 6 , No 5 ( 1966 ), pp. 787 - 823 . MR 211590 | Zbl 0184.38902 · Zbl 0184.38902
[23] Levitin ( E. ) and Poljak ( B. ) .- Convergence of minimizing sequences in conditional extremum problems , Sov. Math. Dokl. 7 ( 1967 ), pp. 764 - 767 . MR 199016 | Zbl 0161.07002 · Zbl 0161.07002
[24] Lucchetti ( R. ) and Patrone ( F. ) .- Hadamard and Tyhonov well-posedness of a certain class of convex functions , J. Math. Anal. Appl. 88 ( 1982 ), pp. 204 - 215 . MR 661413 | Zbl 0487.49013 · Zbl 0487.49013
[25] Lyubich ( Y. ) and Maistrovski ( G. ) .- The general theory of relaxation processes for convex functionals , Russ. Math. Surv. 25 ( 1970 ), pp. 57 - 117 . Zbl 0207.45001 · Zbl 0207.45001
[26] Milman ( V.D. ) .- A certain transformation of convex functions and a duality of the \beta and \delta characteristics of a \beta space , Dokl. Akad. Nauk. SSSR 187 ( 1969 ), pp. 33 - 45 . MR 256138 | Zbl 0188.43503 · Zbl 0188.43503
[27] Psenitchny ( B. ) and Daniline ( Y. ) .- Méthodes numériques dans les problèmes d’extremum , French translation, Mir , Moskow ( 1975 ).
[28] Penot ( J.-P. ) .- Metric regularity, openness and Lipschitzian behaviour of multifunctions , Nonlinear Anal. Theory Methods Appl. 13 , No 6 ( 1989 ), pp. 629 - 643 . MR 998509 | Zbl 0687.54015 · Zbl 0687.54015
[29] Penot ( J.-P. ) and Volle ( V. ) .- Inversion of real valued functions and applications , Z.O.R. Methods and Models of Operations Research 34 ( 1990 ), pp. 117 - 141 . MR 1045821 | Zbl 0718.49012 · Zbl 0718.49012
[30] Penot ( J.-P. ) and Volle ( M. ) .- On strongly convex and paraconvex dualities , in ” Generalized Convexity and Fractional Programming with Economics Applications”, Proc. Pisa. Italy (1988) , A. Cambini et al. Eds. Lecture Notes in Economics and Mathematical Systems 345 , Springer Verlag Berlin ( 1990 ), pp. 198 - 218 . MR 1117933 | Zbl 0701.49038 · Zbl 0701.49038
[31] Poljak ( B. ) . - Existence theorems and convergence of minimizing sequences in extremum problems with restrictions , Sov. Math. Dokl. 7 ( 1967 ), pp. 72 - 75 . MR 198307 | Zbl 0171.09501 · Zbl 0171.09501
[32] Prüss ( J. ) . - A Characterization of uniform convexity and application to accretive operators , Hiroshima Math. J. 11 ( 1981 ), pp. 229 - 234 . MR 620534 | Zbl 0464.47035 · Zbl 0464.47035
[33] Roberts ( A.W. ) and Varberg ( D. ) .- Convex functions , Academic Press , New York ( 1973 ). MR 442824 | Zbl 0271.26009 · Zbl 0271.26009
[34] Rockafellar ( R.T. ) .- Monotone operators and the proximal point algorithm , SIAM J. Control Opt. 14 ( 1976 ), pp. 877 - 898 . MR 410483 | Zbl 0358.90053 · Zbl 0358.90053
[35] Šmulyan ( V.L. ) .- Sur la dérivabilité de la norme dans l’espace de Banach , Dokl. Acad. Naukl. SSSR , 27 ( 1940 ), pp. 643 - 648 . MR 2704 | Zbl 0023.32604 · Zbl 0023.32604
[36] Vial ( J.P. ) .- Strong convexity of sets and functions , J. Math. Econ. 9 ( 1982 ) pp. 187 - 205 . MR 637263 | Zbl 0479.52005 · Zbl 0479.52005
[37] Vial ( J.-P. ) .- Strong and weak convexity of sets and functions , Math. Oper. Res. 8 ( 1983 ), pp. 231 - 259 . MR 707055 | Zbl 0526.90077 · Zbl 0526.90077
[38] Vladimirov ( A.A. ), Nesterov ( Yu E. ) and Chekanov ( Yu N. ) .- On uniformly convex functionals , Vest. Mosk. Univ. 3 , Ser. XV ( 1978 ), pp. 12 - 23 . MR 516874 | Zbl 0442.47046 · Zbl 0442.47046
[39] Vladimirov ( A.A. ), Nesterov ( Yu E. ) and Chekanov ( Yu N. ) .- On uniformly quasi-convex functionals , Vest. Mosk. Univ. 4 , Ser. XV ( 1978 ), pp. 18 - 27 . MR 525130 | Zbl 0453.47047 · Zbl 0453.47047
[40] Volle ( M. ) Personal communication .
[41] Zalinescu ( C. ) .- On uniformly convex functions , J. Math. Anal. Appl. 95 ( 1983 ), pp. 344 - 374 . MR 716088 | Zbl 0519.49010 · Zbl 0519.49010
[42] Zolezzi ( T. ) .- On equiwellset minimum problems , Appl. Math. Optimization 4 ( 1978 ), pp. 209 - 223 . MR 493627 | Zbl 0381.90105 · Zbl 0381.90105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.