zbMATH — the first resource for mathematics

Feynman-Kac kernels in Markovian representations of the Schrödinger interpolating dynamics. (English) Zbl 0869.60101
Summary: Probabilistic solutions of the so-called Schrödinger boundary data problem provide for a unique Markovian interpolation between any two strictly positive probability densities designed to form the input-output statistics data for the process taking place in a finite-time interval. The key issue is to select the jointly continuous in all variables positive Feynman-Kac kernel, appropriate for the phenomenological (physical) situation. We extend the existing formulations of the problem to cases when the kernel is not a fundamental solution of a parabolic equation, and prove the existence of a continuous Markovian interpolation in this case. Next, we analyze the compatibility of this stochastic evolution with the original parabolic dynamics, which is assumed to be governed by the temporally adjoint pair of (parabolic) partial differential equations, and prove that the pertinent random motion is a diffusion process. In particular, in conjunction with Born’s statistical interpretation postulate in quantum theory, we consider stochastic processes which are compatible with the Schrödinger picture quantum evolution.

60K40 Other physical applications of random processes
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
Full Text: DOI arXiv
[1] Schrödinger, Ann. Inst. Henri Poincare 2 pp 269– (1932)
[2] Fortet, J. Math. Pures Appl. 9 pp 83– (1940)
[3] Beurling, Ann. Math. 72 pp 189– (1960)
[4] Jamison, Z. Wahrsch. verw. Geb. 30 pp 65– (1974)
[5] Zambrini, J. Math. Phys. 27 pp 3207– (1986)
[6] Zambrini, Phys. Rev. A 35 pp 3631– (1987)
[7] Nagasawa, Prob. Theory Relat. Fields 82 pp 109– (1989)
[8] Blanchard, Phys. Rev. E 49 pp 3815– (1994)
[9] Garbaczewski, Phys. Rev. A 51 pp 3445– (1995)
[10] Garbaczewski, Phys. Rev. E 51 pp 4114– (1995)
[11] B. Simon,Functional Integration and Quantum Physics(Academic, New York, 1979). · Zbl 0434.28013
[12] M. Freidlin,Functional Integration and Partial Differential Equations(Princeton U.P., Princeton, NJ, 1985). · Zbl 0568.60057
[13] Simon, Bull. Am. Math. Soc. 7 pp 447– (1982)
[14] Garbaczewski, Phys. Lett. A 178 pp 7– (1993)
[15] J. Glimm and A. Jaffe,Quantum Physics: A Functional Integral Point of View(Springer-Verlag, Berlin, 1981). · Zbl 0461.46051
[16] G. Roepstorff,Path Integral Approach to Quantum Physics(Springer-Verlag, Berlin, 1994). · Zbl 0840.60098
[17] E. B. Dynkin,Theory of Markov Processes(Pergamon, Oxford, 1960). · Zbl 0096.11704
[18] E. Nelson,Dynamical Theories of Brownian Motion(Princeton U.P., Princeton, NJ, 1967). · Zbl 0165.58502
[19] N. A. Watson,Parabolic Equations on an Infinite Stripe(Marcel Dekker, New York, 1989).
[20] S. Karlin and H. M. Taylor,A Second Course in Stochastic Processes(Academic, New York, 1981).
[21] E. Nelson,Quantum Fluctuations(Princeton U.P., Princeton, NJ, 1985). · Zbl 0563.60001
[22] Ilin, Usp. Mat. Nauk 27 pp 65– (1962)
[23] Aronson, Colloq. Math. 18 pp 125– (1967)
[24] Besala, Ann. Polon. Math. 29 pp 403– (1975)
[25] N. A. Watson, J. Lond. Math. Soc. (2)8, 311 (1974).
[26] Watson, Archiv. Ration. Mech. Anal. 68 pp 121– (1978)
[27] W. Horsthemke and R. Lefever,Noise-Induced Transitions(Springer-Verlag, Berlin, 1984). · Zbl 0529.60085
[28] Carlen, Commun. Math. Phys. 94 pp 293– (1984)
[29] R. Carmona, inTaniguchi Symposium, PMMP, Katata 1985, edited by K. Ito^ and N. Ikeda (Academic, Boston, 1987).
[30] Kr\.zyzański, Lincei-Rend. Sc. fis. mat. e nat. 28 pp 26– (1959)
[31] Garbaczewski, Phys. Lett. A 185 pp 149– (1994)
[32] Ph. Blanchard, P. Garbaczewski, and R. Olkiewicz,Nonnegative Feynman-Kac kernels in Schrödinger’s interpolation problem, subm. for publ. · Zbl 0870.35046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.