×

zbMATH — the first resource for mathematics

Steady flow of a power-law fluid past a cylinder. (English) Zbl 0868.76007
Considered is a two-dimensional steady flow of power-law fluid past a stationary circular cylinder. The governing nonlinear equations, expressed in terms of a stream function and vorticity, are solved by finite differences. Parameters such as the drag coefficient, separation angle, wake length and critical Reynolds number are presented and contrasted with those of a Newtonian fluid.

MSC:
76A05 Non-Newtonian fluids
76M20 Finite difference methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Takami, H., Keller, H. B.: Steady two-dimensional viscous flow of an incompressible fluid past a circular cylinder. Phys. Fluids12, 51-56 (Suppl. II) (1969). · Zbl 0206.55004
[2] Dennis, S. C. R., Chang, G.-Z.: Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. J. Fluid Mech.42, 471-489 (1970). · Zbl 0193.26202
[3] Nieuwstadt, F., Keller, H. B.: Viscous flow past circular cylinders. Comp. Fluids1, 59-71 (1973). · Zbl 0328.76022
[4] Fornberg, B.: A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech.98, 819-855 (1980). · Zbl 0428.76032
[5] D’Alessio, S. J. D., Dennis, S. C. R.: A vorticity model for viscous flow past a cylinder. Comp. Fluids23, 279-293 (1994). · Zbl 0802.76014
[6] Graham, D. I., Jones, T. E. R.: Settling and transport of spherical particles in power-law fluids at finite Reynolds number. J. Non-Newtonian Fluid Mech.54, 465-488 (1994).
[7] Adachi, K., Yoshioka, N., Yamamoto, K.: On non-Newtonian flow past a sphere. Chem. Eng. Sci.28, 2033-2043 (1973).
[8] Dazhi, G., Tanner, R. I.: The drag on a sphere in a power-law fluid. J. Non-Newtonian Fluid Mech.17, 1-17 (1985). · Zbl 0554.76010
[9] Chhabra, R. P.: Motion of spheres in power-law (viscoinelastic) fluids at intermediate Reynolds numbers: a unified approach. Chem. Eng. Proc.28, 89-94 (1990).
[10] Townsend, P.: A numerical simulation of Newtonian and visco-elastic flow past stationary and rotating cylinders. J. Non-Newtonian Fluid Mech.6, 219-243 (1980). · Zbl 0421.76002
[11] Hu, H. H., Joseph, D. D.: Numerical simulation of viscoelastic flow past a cylinder. J. Non-Newtonian Fluid Mech.37, 347-377 (1990). · Zbl 0712.76018
[12] Slattery, J. C.: Momentum, energy and mass transfer in continua, 2nd ed., p. 52. New York: Robert E. Krieger Pub. 1981.
[13] Lamb, H.: Hydrodynamics, 6th ed., p. 609. Cambridge: Cambridge University Press 1932. · JFM 58.1298.04
[14] Imai, I.: On the asymptotic behaviour of viscous fluid flow at a great distance from a cylindrical body, with special reference to Filon’s paradox. Proc. R. Soc. London Ser.A208, 487-516 (1951). · Zbl 0043.19007
[15] Badr, H. M., Dennis, S. C. R., Young, P. J. S.: Steady and unsteady flow past a rotating circular cylinder at low Reynolds numbers. Comp. Fluids17 579-609 (1989). · Zbl 0673.76117
[16] Fornberg, B.: Steady viscous flow past a circular cylinder up to Reynolds number 500. J. Comp. Phys.61, 297-320 (1985). · Zbl 0576.76026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.