×

zbMATH — the first resource for mathematics

Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. (English) Zbl 0868.65006
The aim of a series of papers starting with the present one is the derivation of a discrete vector and tensor calculus. This calculus is derived directly from underlying physical principles and is used to construct robust and accurate finite difference expressions on logically rectangular grids. In the present work the authors construct finite difference analogues of the divergence, curl and rotation operators. It is shown that these discrete analogues satisfy certain compatibility conditions which are shared by the continuous operators.
Reviewer: Th.Sonar (Hamburg)

MSC:
65D25 Numerical differentiation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Samarskii, A.A.; Tishkin, V.F.; Favorskii, A.P.; Shashkov, M.Yu., Operational finite-difference schemes, Diff. eqns., 17, 854-862, (1981) · Zbl 0485.65060
[2] Samarskii, A.A.; Tishkin, V.F.; Favorskii, A.P.; Shashkov, M.Yu., Employment of the reference-operator method in the construction of finite difference analogs of tensor operations, Diff. eqns., 18, 881-885, (1982) · Zbl 0532.65069
[3] Shashkov, M., Conservative finite-difference schemes on general grids, (1995), CRC Press, Boca Raton, FL
[4] Ardelyan, N.V., The convergence of difference schemes for two-dimensional equations of acoustics and Maxwell’s equations, USSR comput. math. and math. phys., 23, 5, 93-99, (1983) · Zbl 0571.65107
[5] Ardelyan, N.V.; Chernigovskii, S.V., Convergence of difference schemes for two-dimensional gas-dynamic equations in acoustics approximations with gravitation taken into account, translated from Russian by consultants bureau corp, Diff. eqns., 20, 7, 807-813, (1984) · Zbl 0561.76088
[6] Ardelyan, N.V., Method of investigating the convergence of nonlinear finite-difference schemes, Diff. eqns., 23, 7, 737-745, (1987) · Zbl 0637.65099
[7] Denisov, A.A.; Koldoba, A.V.; Poveshchenko, Yu.A., The convergence to generalized solutions of difference schemes of the reference-operator method for Poisson’s equation, USSR comput. math. and math. phys., 29, 2, 32-38, (1989) · Zbl 0702.65085
[8] Koldoba, A.V.; Poveshchenko, Yu.A.; Popov, Yu.P., The approximation of differential operators on nonorthogonal meshes, Diff. eqns., 19, 7, 919-927, (1983) · Zbl 0538.65053
[9] Apanovich, Yu.V.; Lymkis, E.D., Difference schemes for the Navier-Stokes equations on a net consisting of Dirichlet cells, English translation of zhurnal vychislitel’noi matematiki i matematicheskoi fiziki, USSR comput. math. and math. phys., 28, 2, 57-63, (1988) · Zbl 0672.76033
[10] Goloviznin, V.M.; Korshunov, V.K.; Sabitova, A.; Samarskaya, E.A., Stability of variational-difference schemes in gas-dynamics, Diff. eqns., 20, 7, 852-858, (1984) · Zbl 0624.76094
[11] Sabitova, A.; Samarskaya, E.A., Stability of variational-difference schemes for the problems of gas-dynamics with heat conduction, Diff. eqns., 21, 7, 861-864, (1985) · Zbl 0661.76067
[12] Solov’ev, A.; Shashkov, M., Difference scheme for the “dirichlet particles” method in cylindrical coordinates, conserving symmetry of gas-dynamical flow, Diff. eqns., 24, 7, 817-823, (1988) · Zbl 0674.76053
[13] Shashkov, M.; Solov’ov, A., Numerical simulation of two-dimensional flows by the free-Lagrangian method, (), TUM-M9105
[14] Solov’ova E, E.; Shashkov, M., Application of the basic operator method for difference scheme construction on un-concordant meshes, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 6, (1984), (in Russian)
[15] Favorskii, A.; Tishkin, V.; Shashkov, M., Variational-difference schemes for the heat conduction equation on nonregular grids, Sov. phys. dokl., 24, 446-448, (1979) · Zbl 0435.65081
[16] Favorskii, A.; Korshiya, T.; Shashkov, M.; Tishkin, V., Variational approach to the construction of finite-difference schemes for the diffusion equations for magnetic field, Diff. eqns., 18, 7, 863-872, (1982)
[17] Favorskii, A.; Korshiya, T.; Shashkov, M.; Tishkin, V., A variational approach to the construction of difference schemes on curvilinear meshes for heat-conduction equation, USSR comput. math. and math. phys., 20, 135-155, (1980) · Zbl 0473.65068
[18] Shashkov, M.; Steinberg, S., Support-operator finite-difference algorithms for general elliptic problems, J. of comput. phys., 118, 131-151, (1995) · Zbl 0824.65101
[19] Favorskii, A.P.; Korshiya, T.; Tishkin, V.F.; Shashkov, M., Difference schemes for equations of electromagnetic field diffusion with anisotropic conductivity coefficients, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 4, (1980), (in Russian)
[20] Dmitrieva, M.V.; Ivanov, A.A.; Tishkin, V.F.; Favorskii, A.P., Construction and investigation of support-operators finite-difference schemes for Maxwell equations in cylindrical geometry, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 27, (1985), (in Russian)
[21] Sorokin, S.B., The method of step-by-step inversion for numerical solution of the biharmonic equation, Siberian mathematical journal, 36, 3, 569-573, (1995) · Zbl 0858.65080
[22] Konovalov, A.N., Numerical methods for static problems of elasticity, translated from Russian by consultants bureau, New York, plenum publishing corp, Siberian mathematical journal, 36, 3, 491-505, (1995)
[23] Tishkin, V.F., Variational-difference schemes for the dynamical equations for deformable media, Diff. eqns., 21, 7, 865-870, (1985) · Zbl 0581.73023
[24] Favorskii, A.; Samarskii, A.; Tishkin, V.; Shashkov, M., On constructing full conservative difference schemes for gas dynamic equations in Eulerian form by the method of basic operators, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 63, (1981), (in Russian)
[25] Korobitsin, V.A., Axisymmetric difference operators in an orthogonal coordinate system, USSR comput. math. and math. phys., 29, 6, 13-21, (1989) · Zbl 0732.65105
[26] Korobitsin, V.A., Basic operators method for construction of difference schemes in curvilinear orthogonal coordinate system, Mathl. modelling, 2, 6, 110-117, (1990) · Zbl 0974.76544
[27] Castillo, J.; Hyman, J.M.; Shashkov, M.J.; Steinberg, S., The sensitivity and accuracy of fourth order finite-difference schemes on nonuniform grids in one dimension, Computers math. applic., 30, 8, 41-55, (1995) · Zbl 0836.65025
[28] Goloviznin, V.M.; Korshunov, V.K.; Samarskii, A.A., Two-dimensional difference schemes of magnetohydrodynamics on triangle Lagrange meshes, USSR comput. math. and math. phys., 22, 4, 160-178, (1982) · Zbl 0518.76088
[29] Solov’ev, A.; Solov’eva, E.; Tishkin, V.; Favorskii, A.; Shashkov, M., Approximation of finite-difference operators on a mesh of Dirichlet cells, Diff. eqns., 22, 7, 863-872, (1986) · Zbl 0616.65021
[30] Mikhailova, N.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., Numerical modeling of two-dimensional gas-dynamic flows on a variable-structure mesh, USSR comput. math. and math. phys., 26, 5, 74-84, (1986) · Zbl 0636.76067
[31] Volkova, R.; Kruglakova, L.; Misheskaya, E.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., SAFRA. functional filling, (), (in Russian)
[32] Taran, M.; Tishkin, V.; Favorskii, A.; Feoktistov, L.; Shashkov, M., On simulation of the collapse of a quasispherical target in a hard cone, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 127, (1980), (in Russian)
[33] Gasilov, V.; Goloviznin, V.; Taran, M.; Tishkin, V.; Favorskii, A.; Shashkov, M., Numerical simulation of the Rayleigh-Taylor instability for incompressible flows, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 70, (1979), (in Russian) · Zbl 0438.76042
[34] Gasilov, V.; Goloviznin, V.; Kurtmullaev, R.; Semenov, V.; Sosnin, N.; Tishkin, V.; Favorskii, A.; Shashkov, M., Numerical simulation of the compression of toroidal plasma by quasi-spherical liner, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 71, (1979), (in Russian) · Zbl 0438.76100
[35] Gasilov, V.; Goloviznin, V.; Kurtmullaev, R.; Semenov, V.; Favorskii, A.; Shashkov, M., The numerical simulation of the quasi-spherical metal liner dynamics, () · Zbl 0438.76100
[36] Kirpichenko, P.; Sokolov, V.; Tarasov, Ju.; Tishkin, V.; Turina, N.; Favorskii, A.; Shashkov, M., A numerical simulation of over-compressed detonation wave in a conic canal, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 82, (1984), (in Russian)
[37] Bakirova, M.; Burdiashvili, M.; Vo’tenko, D.; Ivanov, A.; Karpov, V.; Kirov, A.; Korshiaya, T.; Krukovskii, A.; Lubimov, B.; Tishkin, V.; Favorskii, A.; Shashkov, M., On simulation of a magnetic field in a spiral band reel, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 110, (1981), (in Russian)
[38] Burdiashvili, M.; Vo’tenko, D.; Ivanov, A.; Kirov, A.; Tishkin, V.; Favorskii, A.; Shashkov, M., A magnetic field of a toroidal spiral with a screen, Preprint Keldysh inst. of appl. math. the USSR ac. of sc., Volume 63, (1984), (in Russian)
[39] Demin, A.V.; Korobitsyn, V.A.; Mazurenko, A.I.; Khe, A.I., Calculation of the flows of a viscous incompressible liquid with a free surface on two dimensional Lagrangian nets, USSR comput. math. and math. phys., 28, 6, 81-87, (1988) · Zbl 0702.76035
[40] Maikov, A.R.; Sveshnikov, A.G.; Yakunin, S.A., Mathematical modeling of microwave plasma generator, USSR comput. math. and math. phys., 25, 3, 149-157, (1985)
[41] Dezin, A.A., Method of orthogonal expansions, Siberian mathematical journal, 9, 4, 788-797, (1968)
[42] Dezin, A.A., Combination model of Euclidean space and difference operators, Siberian mathematical journal, 16, 4, 536-545, (1975) · Zbl 0332.58017
[43] Dezin, A.A., Natural differential operators and the separation of variables, Diff. eqns., 9, 1, 18-23, (1973) · Zbl 0295.35073
[44] Dezin, A.A., Some models related to the Euler equations, Diff. eqns., 6, 1, 12-20, (1970) · Zbl 0247.35008
[45] Kozhakhmedov, N.B., Solution of the first boundary-value problem for the Lame’s equation by the application of invariant finite-difference operators, Diff. eqns., 6, 5, 694-705, (1970) · Zbl 0264.65066
[46] Krylov, A.L., Difference approximations to differential operators of mathematical physics, Soviet math. dokl., 9, 1, 138-142, (1968) · Zbl 0169.43001
[47] Krylov, A.L., Models with finite number of degrees of freedom for class of problems in mathematical physics, (difference systems with conservation laws), Soviet phys. dokl., 7, 18-20, (1962) · Zbl 0116.18001
[48] Krzywicki, A., On orthogonal decomposition of two-dimensional periodic discrete vector fields, bulletin de L’academie polonaise des sciences, Serie des sciences math., astr., et phys., 25, 2, 123-130, (1977)
[49] Lebedev, V.I., Method of orthogonal projections for finite-difference analog of one system of equations, Reports of USSR Academy of sciences, 113, 6, 1206-1209, (1957), (in Russian) · Zbl 0081.12604
[50] Lebedev, V.I., Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics—I, USSR comput. math. and math. phys., 4, 3, 69-92, (1964) · Zbl 0158.34301
[51] Lebedev, V.I., Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics—II, USSR comput. math. and math. phys., 4, 4, 36-50, (1964)
[52] Szustalewicz, A., On orthogonal decomposition of two-dimensional vector fields, Zastosowania matemetyki-applicationes mathematicae, 18, 3, 433-472, (1984) · Zbl 0597.65010
[53] Weil, H., The method of orthogonal projection in potential theory, Duke mathematical journal, 7, 411-444, (1940) · JFM 66.0444.01
[54] Ladyzhenskaia, O.A., The mathematical theory of viscous incompressible flow, (1963), Gordon and Breach, New York
[55] Chorin, A.J., On the convergence of discrete approximations to the Navier-Stokes equations, Math. comput., 23, 341-353, (1969) · Zbl 0184.20103
[56] Nicolaides, R.A., A discrete vector field theory and some applications, (), 120-121
[57] Nicolaides, R.A.; Wu, X., Covoume solutions of three dimensional DIV-CURL equations, ICASE (institute for computer applications in science and engineering) report no. 95-4, (1995), Hampton, VA
[58] Nicolaides, R.A., Direct discretization of planar DIV-CURL problems, SIAM J. numer. anal, 29, 1, 32-56, (1992) · Zbl 0745.65063
[59] Solov’ov, A.; Shashkov, M., Finite-difference schemes for solution of heat equation on Dirichlet grid, (), (in Russian)
[60] Dodziuk, J., Finite-difference approach to the Hodge theory of harmonic forms, American journal of mathematics, 98, 1, 79-104, (1973) · Zbl 0324.58001
[61] Dezin, A.A., Multidimensional analysis and discrete models, (1995), CRC Press, Boca Raton, FL · Zbl 0851.39008
[62] Lefschetz, S., Algebraic topology, (1942), American Mathematical Society, New York City · Zbl 0061.39302
[63] J.M. Hyman and J.C. Scovel, Deriving Mimetic Difference Approximations to Differential Operators Using Algebraic Topology, Los Alamos National Laboratory, (personal communication).
[64] Favorskii, A.; Shashkov, M.; Tishkin, V., The usage of topological methods in the discrete models construction, Preprint Keldysh institute of applied mathematics of the USSR Academy of sciences, Volume 96, (1983), (in Russian)
[65] Schey, H.M., Div, Grad, curl, and all that; informal text on vector calculus, (1992), W.W. North, New York · Zbl 0265.26009
[66] J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grid, (in preparation). · Zbl 1005.65024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.