×

zbMATH — the first resource for mathematics

Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. (English) Zbl 0867.76025
Orr-Sommerfeld type differential equations governing the hydrodynamic stability of shear and related flows (applications in weather studies, aeroplane wing dynamics, electrohydrodynamics) are considered. The authors study the implementation of a Chebyshev tau-QZ algorithm for finding all the eigenvalues and eigenfunctions in these equations, for the treatment of multilayer flows, for the removing of spurious eigenvalues, and for finding the eigenvalues at high Reynolds numbers. Three versions of the Chebyshev tau method referred to as \(D^4\) (\(D^4\) is the fourth derivative operator), \(D^2\), and \(D\) methods, are discussed and compared (the underlying physical problems include Poiseuille flow, Couette flow, and pressure gradient circular pipe flow). The Orr-Sommerfeld like flows for two immiscible fluids are also dealt with, and some spectra of the flows are shown.
Reviewer: V.Burjan (Praha)

MSC:
76E05 Parallel shear flows in hydrodynamic stability
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
Software:
LAPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abdullah, A.A.; Lindsay, K.A., Some remarks on the computation of the eigenvalues of linear systems, Math. models methods appl. sci., 1, 153-165, (1991) · Zbl 0742.76031
[2] Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.J.; Du Croz, J.; Greenbaum, A.; Hammarling, S.; McKenney, A.; Ostrouchov, S.; Sorensen, D., LAPACK users’ guide, () · Zbl 0843.65018
[3] Butler, K.M.; Farrell, B.F., Three-dimensional optimal perturbations in viscous shear flow, Phys. fluids A, 4, 1637-1650, (1992)
[4] Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Zang, T.A., Spectral methods in fluid dynamics, (1988), Springer Berlin · Zbl 0658.76001
[5] Chen, K.P.; Crighton, D.G., Instability of the large Reynolds number flow of a Newtonian fluid over a viscoelastic fluid, Phys. fluids A, 6, 152-163, (1994) · Zbl 0826.76023
[6] Choi, J.; Dongarra, J.J.; Pozo, R.; Sorensen, D.C.; Walker, D.W., CRPC research into linear algebra software for high performance computers, Internat. J. supercomputer appl., 8, 99-118, (1994)
[7] Davey, A., A simple numerical method for solving Orr-Sommerfeld problems, Quart. J. mech. appl. math., 26, 401-411, (1973) · Zbl 0266.65062
[8] Demmel, J.; Kågström, B., The generalized Schur decomposition of an arbitrary pencil A − λB: robust software with error bounds and applications. part I: theory and algorithms, ACM trans. math. software, 19, 160-174, (1993) · Zbl 0889.65042
[9] Demmel, J.; Kågström, B., The generalized Schur decomposition of an arbitrary pencil A − λB: robust software with error bounds and applications. part II: software and applications, ACM trans. math. software, 19, 175-201, (1993) · Zbl 0889.65043
[10] Dongarra, J.J.; Walker, D.W., Software libraries for linear algebra computations on high performance computers, SIAM rev., 37, 151-180, (1995) · Zbl 0874.65014
[11] Drazin, P.G.; Reid, W.H., Hydrodynamic stability, (1981), Cambridge University Press Cambridge · Zbl 0449.76027
[12] Fearn, D.R., Eigensolutions of boundary value problems using inverse iteration, J. comput. appl. math., 34, 201-209, (1991) · Zbl 0723.65064
[13] Fox, L., Chebyshev methods for ordinary differential equations, Comput. J., 4, 318-331, (1962) · Zbl 0103.34203
[14] Gardner, D.R.; Trogdon, S.A.; Douglas, R.W., A modified tau spectral method that eliminates spurious eigenvalues, J. comput. phys., 80, 137-167, (1989) · Zbl 0661.65084
[15] Haidvogel, D.B.; Zang, T., The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. comput. phys., 30, 167-180, (1979) · Zbl 0397.65077
[16] Hooper, A.P., The stability of two superposed viscous fluids in a channel, Phys. fluids A, 1, 1133-1142, (1989) · Zbl 0675.76047
[17] Huang, W.; Sloan, D.M., The pseudospectral method for solving differential eigenvalue problems, J. comput. phys., 111, 399-409, (1994) · Zbl 0799.65091
[18] Lindsay, K.A.; Ogden, R.R., A practical implementation of spectral methods resistant to the generation of spurious eigenvalues, Internat. J. numer. methods fluids, 15, 1277-1294, (1992) · Zbl 0762.76082
[19] McFadden, G.B.; Murray, B.T.; Boisvert, R.F., Elimination of spurious eigenvalues in the Chebyshev tau spectral method, J. comput. phys., 91, 228-239, (1990) · Zbl 0717.65063
[20] Moler, C.B.; Stewart, G.W., An algorithm for generalized matrix eigenproblems, SIAM J. numer. anal., 10, 241-256, (1973) · Zbl 0253.65019
[21] Mulone, G., On the nonlinear stability of a fluid layer of a mixture heated and salted from below, Contin. mech. thermodyn., 6, 161-184, (1994) · Zbl 0809.76034
[22] Orszag, S.A., Accurate solution of the Orr-Sommerfeld stability equation, J. fluid mech., 50, 689-703, (1971) · Zbl 0237.76027
[23] Reddy, S.C.; Henningson, D.S., Energy growth in viscous channel flows, J. fluid mech., 252, 209-238, (1993) · Zbl 0789.76026
[24] Renardy, Y., Weakly nonlinear behaviour of periodic disturbances in two-layer Couette-Poiseuille flow, Phys. fluids A, 1, 1666-1676, (1989) · Zbl 0683.76037
[25] Stewart, G.W.; Sun, J.-G., Matrix perturbation theory, (1990), Academic Press New York
[26] Straughan, B.; Walker, D.W., Anisotropic porous penetrative convection, (), 97-115 · Zbl 0868.76033
[27] B. Straughan and D.W. Walker, Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems, J. Comput. Phys., to appear. · Zbl 0858.76064
[28] B. Straughan and D.W. Walker, Multi-component diffusion and penetrative convection, to appear. · Zbl 0868.76033
[29] Yih, C.S., Instability due to viscosity stratification, J. fluid mech., 27, 337-352, (1967) · Zbl 0144.47102
[30] Zebib, A., Removal of spurious modes encountered in solving stability problems by spectral methods, J. comput. phys., 70, 521-525, (1987) · Zbl 0612.65049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.