×

zbMATH — the first resource for mathematics

A general Bahadur representation of \(M\)-estimators and its application to linear regression with nonstochastic designs. (English) Zbl 0867.62012
Summary: We obtain strong Bahadur representations for a general class of \(M\)-estimators that satisfies \(\sum_i\psi(x_i,\theta)= o(\delta_n)\), where the \({\mathbf x}_i\)’s are independent but not necessarily identically distributed random variables. The results apply readily to \(M\)-estimators of regression with nonstochastic designs. More specifically, we consider the minimum \(L_p\) distance estimators, bounded influence \(GM\)-estimators and regression quantiles. Under appropriate design conditions, the error rates obtained for the first-order approximations are sharp in these cases. We also provide weaker and more easily verifiable conditions that suffice for an error rate that is suboptimal but strong enough for deriving the asymptotic distribution of \(M\)-estimators in a wide variety of problems.

MSC:
62F12 Asymptotic properties of parametric estimators
62J05 Linear regression; mixed models
60F15 Strong limit theorems
62F35 Robustness and adaptive procedures (parametric inference)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Babu, G. J. (1989). Strong representation for LAD estimators in linear models. Probab. Theory Related Fields 83 547-558. · Zbl 0665.62033
[2] Bahadur, R. R. (1966). A note on quantiles in large samples. Ann. Math. Statist. 37 577-581. · Zbl 0147.18805
[3] Bai, Z. D., Rao, C. R. and Wu, Y. (1992). M-estimation of multivariate linear regression parameters under a convex discrepancy function. Statist. Sinica 2 237-254. · Zbl 0820.62048
[4] Bloomfield, P. and Steiger, W. L. (1983). Least Absolute Deviation: Theory, Applications and Algorithms. Birkhäuser, Boston. · Zbl 0536.62049
[5] Bose, A. (1996). Bahadur representation of M-estimates based on U functionals. Technical Report 96-2, Dept. Statistics, Purdue Univ.
[6] Carroll, R. J. (1978). On almost sure expansions for M-estimates. Ann. Statist. 6 314-318. · Zbl 0376.62034
[7] Chen, X. (1993). On the law of the iterated logarithm for independent Banach space valued random variables. Ann. Probab. 21 1991-2011. · Zbl 0791.60005
[8] Freedman, D. (1975). On tail probability for martingales. Ann. Probab. 3 100-118. · Zbl 0313.60037
[9] Haberman, S. J. (1989). Convexity and estimation. Ann. Statist. 17 1631-1661. · Zbl 0699.62027
[10] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986). Robust Statistics: The Approach Based on Influence Functions. Wiley, New York. · Zbl 0593.62027
[11] He, X. and Shao, Q. M. (1994). A strong Bahadur representation theorem of M-estimators. Research Report 590, Dept. Mathematics, National Univ. Singapore.
[12] He, X. and Wang, G. (1995). Law of the iterated logarithm and invariance principle for Mestimators. Proc. Amer. Math. Soc. 123 563-573. JSTOR: · Zbl 0855.62017
[13] H össjer, O. (1994). Rank-based estimates in the linear model with high breakdown point. J. Amer. Statist. Assoc. 89 149-158. JSTOR: · Zbl 0795.62062
[14] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Sy mp. Math. Statist. Probab. 1 221-233. Univ. California Press, Berkeley. · Zbl 0212.21504
[15] Jure cková, J. (1985). Representation of M-estimators with the second-order asy mptotic distribution. Statist. Decisions 3 263-276. · Zbl 0583.62014
[16] Jure cková, J. and Sen, P. K. (1987). A second-order asy mptotic distributional representation of M-estimators with discontinuous score functions. Ann. Probab. 15 814-823. · Zbl 0635.62017
[17] Kiefer, J. (1967). On Bahadur representation of sample quantiles. Ann. Math. Statist. 38 1323- 1342. · Zbl 0158.37005
[18] Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46 33-50. JSTOR: · Zbl 0373.62038
[19] Liese, F. and Vajda, I. (1994). Consistency of M-estimates in general regression models. J. Multivariate Anal. 50 93-114. · Zbl 0872.62071
[20] Martinsek, A. (1989). Almost sure expansion for M-estimators and S-estimators in regression. Technical Report 25, Dept. Statistics, Univ. Illinois.
[21] Niemiro, W. (1992). Asy mptotics for M-estimators defined by convex minimization. Ann. Statist. 20 1514-1533. · Zbl 0786.62040
[22] Pollard, D. (1991). Asy mptotics for least absolute deviation regression estimators. Econometric Theory 7 186-199. JSTOR: · Zbl 04504753
[23] Portnoy, S. and Koenker, R. (1989). Adaptive L-estimation for linear models. Ann. Statist. 17 362-381. · Zbl 0736.62060
[24] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. Wiley, New York. · Zbl 0538.62002
[25] Späth, H. (1991). Mathematical Algorithms for Linear Regression. Academic Press, New York. · Zbl 0731.65005
[26] Watson, G. A. (1980). Approximation Theory and Numerical Methods. Wiley, New York. · Zbl 0442.65005
[27] Welsh, A. (1989). On M-process and M-estimation. Ann. Statist. 17 337-362. · Zbl 0701.62074
[28] Wittmann, R. (1987). Sufficient moment and truncated moment conditions for the law of the iterated logarithm. Probab. Theory Related Fields 75 509-530. · Zbl 0608.60026
[29] Yohai, V. J. and Maronna, R. A (1979). Asy mptotic behavior of M-estimators for the linear model. Ann. Statist. 7 258-268. · Zbl 0408.62027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.