zbMATH — the first resource for mathematics

Extending the quasi-steady state approximation by changing variables. (English) Zbl 0866.92010
Summary: The parameter domain for which the quasi-steady state assumption is valid can be considerably extended merely by a simple change of variable. This is demonstrated for a variety of biologically significant examples taken from enzyme kinetics, immunology and ecology.

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
Full Text: DOI
[1] Arditi, R. and L. R. Ginzberg. 1989. Coupling in predator-prey dynamics: ratio-dependence.J. Theor. Biol. 139, 311–326. · doi:10.1016/S0022-5193(89)80211-5
[2] Baker, G. A. and P. R. Graves-Morris. 1984. Padé approximants.Encyclopedia of Mathematics and its Applications. New York: Cambridge University Press.
[3] Beddington, J. R. 1975. Mutual interference between parasites or predators and its effects on searching efficiency.J. Anim. Ecol. 51, 597–624.
[4] Borghans, J. A. M. and R. J. De Boer. 1995. A minimal model for T-cell vaccination.Proc. R. Soc. London Ser. B 259, 173–178. · doi:10.1098/rspb.1995.0025
[5] Cha, S. 1970. Kinetic behavior at high enzyme concentrations.J. Biol. Chem. 245, 4814–4818.
[6] Cha, S. and C.-J. M. Cha. 1965. Kinetics of cyclic enzyme systems.Mol. Pharmacol. 1, 178–189.
[7] DeAngelis, D. L., R. A. Goldstein and R. V. O’Neil. 1975. A model for trophic interaction.Ecology 6, 881–892. · doi:10.2307/1936298
[8] De Boer, R. J. and A. S. Perelson. 1994. T cell repertoires and competitive exclusion.J. Theor. Biol. 169, 375–390. · doi:10.1006/jtbi.1994.1160
[9] De Boer, R. J. and A. S. Perelson. 1995. Towards a general function for T cell proliferation.J. Theor. Biol. in press.
[10] Eigen, M. and P. Schuster. 1979.The Hypercycle: A Principle of Natural Self-Organization. Berlin: Springer.
[11] Goldstein, A. 1944. The mechanism of enzyme-inhibitor-substrate reactions.J. Gen. Physiol. 27, 529–580. · doi:10.1085/jgp.27.6.529
[12] Lim, H. C. 1973. On kinetic behavior at high enzyme concentrations. AIChEJ19, 659–661. · doi:10.1002/aic.690190343
[13] Palsson, B. O. 1987. On the dynamics of the reversible Michaelis-Menten reaction mechanisms.Chem. Eng. Sci. 42, 447–458. · doi:10.1016/0009-2509(87)80007-6
[14] Reiner, J. M. 1969.The Behavior of Enzyme Systems. New York: Van Nostrand Reinhold.
[15] Segel, L. A. 1984.Modeling Dynamic Phenomena in Molecular and Cellular Biology. New York: Cambridge University Press. · Zbl 0639.92001
[16] Segel, L. A. 1988. On the validity of the steady state assumption of enzyme kinetics.Bull. Math. Biol. 6, 579–593. · Zbl 0653.92006
[17] Segel, L. A. and M. Slemrod. 1989. The quasi-steady state assumption: a case study in perturbation.SIAM Rev. 31 446–477. · Zbl 0679.34066 · doi:10.1137/1031091
[18] Sols, A. and R. Marco. 1970. Concentration of metabolites and binding sites. Implications in metabolic regulation. InCurrent Topics in Cellular Regulation, Vol. 2. New York: Academic Press.
[19] Straus, O. H. and A. Goldstein. 1943. Zone behavior of enzymes.J. Gen. Physiol 26, 559–585. · doi:10.1085/jgp.26.6.559
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.