# zbMATH — the first resource for mathematics

Computational analysis of dense gas shock tube flow. (English) Zbl 0866.76052
Summary: Nonclassical phenomena associated with the classical dynamics of real gases in a conventional shock tube are studied. A TVD predictor-corrector (TVD-MacCormack) scheme with reflective endwall boundary conditions is used for the one-dimensional Euler equations to simulate the evolution of the wave field of a van der Waals gas. Depending upon the initial conditions of the gas, wave fields are produced that contain nonclassical phenomena such as expansion shocks, composite waves, splitting shocks, etc. In addition, the interactions of waves reflected from the endwalls produce both classical and nonclassical phenomena. Wave field evolution is depicted using plots of the flow variables at specific times and with $$x-t$$ diagrams.

##### MSC:
 76M20 Finite difference methods applied to problems in fluid mechanics 76L05 Shock waves and blast waves in fluid mechanics
Full Text:
##### References:
 [1] Aldo AC, Argrow BM (1995) Dense gas flow in minimum length nozzles. J Fluid Eng 117:270 · doi:10.1115/1.2817140 [2] Argrow BM, Cox RA (1993) A quantitative second-law based measure of numerical accuracy. In: Thermodynamics and the design, analysis, and improvement of energy systems. AES-30/HTD-266:49 [3] Borisov AA, Borisov AIA, Kutateladze SS Nakoryakov VE (1983) Rarefaction shock wave near the critical liquid-vapour point. J Fluid Mech 126:59 · doi:10.1017/S002211208300004X [4] Causon DM (1988) A total variation diminishing scheme for computational aerodynamics. In: Morton, KW, Baines, MJ (eds) Numerical methods for fluid dynamics III. Clarendon Press, Oxford, Oxford University Press, New York 449 [5] Cramer MS (1991) Nonclassical dynamics of classical gases. In: Kluwick A (ed) Nonlinear waves in real fluids. Springer, Wien New York 91 [6] Cramer MS (1989a) Shock splitting in single-phase gases. J Fluid Mech 199:281 · Zbl 0659.76075 · doi:10.1017/S0022112089000388 [7] Cramer MS (1989b) Negative nonlinearity in selected fluorocarbons. Phys Fluids A 1:1894 · doi:10.1063/1.857514 [8] Cramer MS (1987) Structure of weak shocks in fluids having embedded regions of negative nonlinearity. Phys Fluids 30:3034 · doi:10.1063/1.866082 [9] Cramer MS, Crickenberger AB (1991) The dissipative structure of shock waves in dense gases. J Fluid Mech 223:325 · Zbl 0717.76075 · doi:10.1017/S0022112091001441 [10] Cramer MS, Fry RN (1993) Nozzle flows of dense gases. Phys Fluids A 5:1246 · doi:10.1063/1.858610 [11] Cramer MS, Kluwick A (1984) On the propagation of waves exhibiting both positive and negative nonlinearity. J Fluid Mech, 142:9 · Zbl 0577.76073 · doi:10.1017/S0022112084000975 [12] Cramer MS, Kluwick A, Watson LT, Pelz W (1986) Dissipative waves in fluids having both positive and negative nonlinearity. J Fluid Mech 169:323 · Zbl 0623.76030 · doi:10.1017/S0022112086000666 [13] Cramer MS, Sen R (1987) Exact solutions for sonic shocks in van der Waals gases. Phys Fluids 30:377 · Zbl 0617.76072 · doi:10.1063/1.866388 [14] Cramer MS, Sen R (1986) Shock formation in fluids having embedded regions of negative nonlinearity. Phys Fluids 29:2181 · Zbl 0623.76071 · doi:10.1063/1.865555 [15] Davis SF (1987) A simplified TVD finite difference scheme via artificial viscosity. SIAM J Sci and Stat Comput 8:1 · Zbl 0689.65058 · doi:10.1137/0908002 [16] Emanuel G (1986) Gas dynamics: Theory and applications. AIAA Education Series, New York [17] Emanuel G (1987) Advanced classical thermodynamics. AIAA Education Series, New York · Zbl 0744.76005 [18] Martin JJ, Hou Y-C (1955) Development of an equation of state for gases. AIChE J 1:142 · doi:10.1002/aic.690010203 [19] Menikoff R, Plohr, BJ (1989) The Riemann problem for fluid flow of real materials. Rev Mod Phys 61:75 · Zbl 1129.35439 · doi:10.1103/RevModPhys.61.75 [20] Schnerr GH, Leidner P (1993a) Two-dimensional nozzle flow of dense gases. ASME Paper 93FE8 [21] Schnerr GH, Leidner P (1993b) Numerical investigation of axial cascades for dense gases. Pacific International Conference on Aerospace Science and Technology, Tainan, Taiwan · Zbl 0925.76507 [22] Sod GA, (1978) A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J Comp Phys 27:1 · Zbl 0387.76063 · doi:10.1016/0021-9991(78)90023-2 [23] Thompson PA (1971) A fundamental derivative in gasdynamics. Phys Fluids 14:1843 · Zbl 0236.76053 · doi:10.1063/1.1693693 [24] Thompson PA, Carafano GC, Kim Y-G (1986) Shock waves and phase changes in a large-heat-capacity fluid emerging from a tube. J Fluid Mech 166:57 · Zbl 0601.76075 · doi:10.1017/S0022112086000046 [25] Thompson PA, Lambrakis KC (1973) Negative shock waves. J Fluid Mech 60:187 · Zbl 0265.76085 · doi:10.1017/S002211207300011X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.