×

Turbulent mixing of a passive scalar. (English) Zbl 0866.76034

The aim is to analyse the conflict between the cascade ideas and the theoretical predictions. Generally, cascade ideas can be applied to passive scalars advected by turbulence. The scalar is examined in the paper under a simplifying assumption that the flow is homogeneous and isotropic, and the considerations and experiments are made only for two-dimensional flows. The authors present numerical models for the advecting velocity and discuss the Kolmogorov-Ornstein-Uhlenbeck advection as well as the restricted Euler advection. The results are presented in plots, diagrams and photos. The paper ends with a conclusion, where the authors comment on the above-mentioned conflict, using numerical results.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
60G60 Random fields
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1063/1.1699986 · Zbl 0044.40601 · doi:10.1063/1.1699986
[2] DOI: 10.1063/1.1699986 · Zbl 0044.40601 · doi:10.1063/1.1699986
[3] DOI: 10.1063/1.861649 · doi:10.1063/1.861649
[4] DOI: 10.1063/1.861725 · doi:10.1063/1.861725
[5] DOI: 10.1017/S0022112082003450 · doi:10.1017/S0022112082003450
[6] DOI: 10.1017/S0022112090000945 · doi:10.1017/S0022112090000945
[7] DOI: 10.1063/1.858093 · doi:10.1063/1.858093
[8] DOI: 10.1063/1.858469 · doi:10.1063/1.858469
[9] DOI: 10.1063/1.858469 · doi:10.1063/1.858469
[10] DOI: 10.1103/PhysRevLett.67.3507 · doi:10.1103/PhysRevLett.67.3507
[11] DOI: 10.1098/rspa.1991.0087 · Zbl 0726.76050 · doi:10.1098/rspa.1991.0087
[12] DOI: 10.1063/1.868085 · doi:10.1063/1.868085
[13] DOI: 10.1063/1.1692063 · Zbl 0164.28904 · doi:10.1063/1.1692063
[14] DOI: 10.1063/1.857904 · doi:10.1063/1.857904
[15] DOI: 10.1063/1.1761199 · doi:10.1063/1.1761199
[16] DOI: 10.1017/S0022112068002041 · doi:10.1017/S0022112068002041
[17] DOI: 10.1098/rspa.1938.0013 · Zbl 0018.15805 · doi:10.1098/rspa.1938.0013
[18] DOI: 10.1017/S0022112059000106 · Zbl 0085.39702 · doi:10.1017/S0022112059000106
[19] DOI: 10.1017/S002211205900009X · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[20] DOI: 10.1103/PhysRevLett.66.2984 · doi:10.1103/PhysRevLett.66.2984
[21] DOI: 10.1103/PhysRevE.47.202 · doi:10.1103/PhysRevE.47.202
[22] DOI: 10.1017/S0022112092004361 · Zbl 0825.76272 · doi:10.1017/S0022112092004361
[23] DOI: 10.1017/S0022112092003185 · doi:10.1017/S0022112092003185
[24] DOI: 10.1017/S0022112086001714 · Zbl 0615.76068 · doi:10.1017/S0022112086001714
[25] DOI: 10.1063/1.857966 · doi:10.1063/1.857966
[26] DOI: 10.1063/1.857966 · doi:10.1063/1.857966
[27] DOI: 10.1017/S0022112074001881 · Zbl 0291.76022 · doi:10.1017/S0022112074001881
[28] Taylor G. I., Proc. London Math. Soc. Ser. 2 20 pp 196– (1921)
[29] DOI: 10.1088/0034-4885/43/5/001 · doi:10.1088/0034-4885/43/5/001
[30] DOI: 10.1063/1.1762301 · doi:10.1063/1.1762301
[31] DOI: 10.1063/1.1693365 · Zbl 0225.76033 · doi:10.1063/1.1693365
[32] DOI: 10.1103/PhysRevA.44.3622 · doi:10.1103/PhysRevA.44.3622
[33] DOI: 10.1063/1.858891 · doi:10.1063/1.858891
[34] DOI: 10.1017/S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822
[35] DOI: 10.1017/S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822
[36] DOI: 10.1063/1.866107 · Zbl 0636.76089 · doi:10.1063/1.866107
[37] DOI: 10.1063/1.866107 · Zbl 0636.76089 · doi:10.1063/1.866107
[38] DOI: 10.1017/S0022112089001643 · doi:10.1017/S0022112089001643
[39] DOI: 10.1063/1.864598 · Zbl 0561.76064 · doi:10.1063/1.864598
[40] DOI: 10.1063/1.857356 · doi:10.1063/1.857356
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.