×

zbMATH — the first resource for mathematics

Uniformly high order accurate essentially non-oscillatory schemes. III. (Reprint). (English) Zbl 0866.65058
Republished from J. Comput. Phys. 71, No. 2, 231-303 (1987; Zbl 0652.65067).

MSC:
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
35L65 Hyperbolic conservation laws
Software:
HLLE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Ben-Artzi, J. Falcowitz, SIAM J. Sci. Comput.
[2] S. R. Chakravarthy, A. Harten, S. Osher, 1986, Essentially non-oscillatory shock-capturing schemes of arbitrarily high accuracy, Reno, NA
[3] Chorin, A.J., J. comput. phys., 22, 517, (1976)
[4] Colella, P.; Woodward, P.R., J. comput. phys., 54, 174, (1984)
[5] Godunov, S.K., Mat. sb., 47, 271, (1984)
[6] E. Harabetian, 1985, A convergent series expansion for hyperbolic systems of conservation laws, NASA · Zbl 0599.35103
[7] Harten, A., Math. comp., 32, 363, (1978)
[8] Harten, A., J. comput. phys., 49, 151, (1983)
[9] Harten, A., J. comput. phys., 49, 357, (1983)
[10] Harten, A., Sinum, 21, 1, (1984)
[11] A. Harten, 1985, On high-order accurate interpolation for non-oscillatory shock capturing schemes, University of Wisconsin · Zbl 0606.76084
[12] A. Harten, January 1986, Preliminary results on the extension of ENO schemes to two-dimensional problems, Proceedings of the International Conference on Hyperbolic Problems, Saint-Etienne · Zbl 0626.65082
[13] Harten, A.; Hyman, J.M., J. comput. phys., 50, 235, (1983)
[14] Harten, A.; Lax, P.D.; van Leer, B., SIAM rev., 25, 35, (1983)
[15] A. Harten, S. Osher, May 1985, MRC Technical Summary Report 2823, SINUM
[16] A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, Uniformly high-order accurate non-oscillatory schemes. II · Zbl 0866.65058
[17] Harten, A.; Osher, S.; Engquist, B.; Chakravarthy, S.R., J. appl. num. math., 2, 347, (1986)
[18] Lax, P.D., Comm. pure appl. math., 7, 159, (1954)
[19] Lax, P.D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Regional conf. series lectures in applied math., (1972), SIAM Philadelphia
[20] Lax, P.D.; Wendroff, B., Commun. pure appl. math., 13, 217, (1960)
[21] Lax, P.D.; Wendroff, B., Commun. pure appl. math., 17, 381, (1964)
[22] van Leer, B., J. comput. phys., 32, 101, (1979)
[23] Osher, S., Sinum, 21, 217, (1984)
[24] S. Osher, E. Tadmor, Math. Comp.
[25] Roe, P.L., J. comput. phys., 43, 357, (1981)
[26] P. L. Roe, 1985, Some contributions to the modeling of discontinuous flows, Lectures in Applied Mathematics, 22, Amer. Math. Soc. Providence, RI · Zbl 0665.76072
[27] M. Sever (Mock), 1985, Order of dissipation near rarefaction centers, Progress and Supercomputing in Computational Fluid Dynamics, Proceedings of U.S.-Israel Workshop 1984, 395, Birkhauser, Boston
[28] Sod, G.A., J. comput. phys., 27, 1, (1978)
[29] Strang, G., Sinum, 5, 506, (1968)
[30] Sweby, P.K., Sinum, 21, 995, (1984)
[31] Woodward, P.; Collella, P., J. comput. phys., 54, 115, (1984)
[32] Xiong-Hau, Wu, You-Lan, Zhu, 1984, A scheme of the singularity- separating method for the nonconvex problem, Computer Center, Academia Sinica · Zbl 0584.76111
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.