×

Cesàro summability of one- and two-dimensional Walsh-Fourier series. (English) Zbl 0866.42020

The author introduces \(p\)-quasi-local operators (the case \(p=1\) reduces to Schipp’s concept of a quasi-local operator) and using Hardy-Lorentz spaces and interpolation proves the following extrapolation result: If \(T\) is sublinear, \(p\)-quasilocal for \(0<p\leq 1\), and of type \((\infty,\infty)\), then \(T\) is bounded from \(H_{p,q}\) to \(L_{p,q}\) for every \(0<p<\infty\) and \(0<q\leq\infty\). He applies this result to Cesàro means of Walsh and double Walsh-Fourier series. He proves the maximal operator \(\sigma^*f\equiv \sup|\sigma_n f|\) is bounded from \(H_{p,q}\) to \(H_{p,q}\) for every \(1/2<p<\infty\) and \(0<q\leq\infty\) (so \(\sigma^*\) is of weak type \((1,1)\)). He obtains a similar result for the maximal operator associated with dyadic Cesàro means without the restriction \(p>1/2\), and for double Cesàro means of Walsh-Fourier series when \(f\) belongs to the hybrid dyadic Hardy space \(H^\#_1\). It follows that if \(f\in H^\#_1\) then \(\sigma_{n,m}f\to f\) a.e. (as \(\min(n,m)\to\infty\)). This improves an earlier result of F. Móricz, F. Schipp and the reviewer [Trans. Am. Math. Soc. 329, No. 1, 131-140 (1992; Zbl 0795.42016)] which was valid for the smaller space \(L\log^+ L\).

MSC:

42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces

Citations:

Zbl 0795.42016
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. Bennett andR. Sharpley,Interpolation of operators, Pure and Applied Math., vol. 129, Academic Press (New York, 1988). · Zbl 0647.46057
[2] J. Bergh andJ. Löfström,Interpolation spaces.An introduction, Springer (Berlin-Heidelberg-New York, 1976).
[3] R.R. Coifman andG. Weiss, Extensions of Hardy spaces and their use in analysis,Bull. Amer. Math. Soc.,83(1977), 569–645. · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[4] N.J. Fine, Cesàro summability of Walsh-Fourier series,Proc. Nat. Acad. Sci. USA,41(1955), 558–591. · Zbl 0065.05303 · doi:10.1073/pnas.41.8.588
[5] N.J. Fine, On the Walsh functions,Trans. Amer. Math. Soc.,65(1949), 372–414. · Zbl 0036.03604 · doi:10.1090/S0002-9947-1949-0032833-2
[6] N. Fujii, A maximal inequality forH 1-functions on a generalized Walsh-Paley group,Proc. Amer. Math. Soc.,77(1979), 111–116. · Zbl 0415.43014
[7] A. M. Garsia,Martingale inequalities, Benjamin Inc. (New York, 1973). · Zbl 0284.60046
[8] J. Marcinkievicz andA. Zygmund, On the summability of double Fourier series,Fund. Math.,32(1939), 122–132. · JFM 65.0266.01
[9] F. Móricz, F. Schipp andW. R. Wade, Cesàro summability of double Walsh-Fourier series,Trans. Amer. Math. Soc.,329(1992), 131–140. · Zbl 0795.42016 · doi:10.2307/2154080
[10] J. Neveu,Discrete-parameter martingales, North Holland (Amsterdam, 1971). · Zbl 0345.60026
[11] F. Schipp, über gewissen Maximaloperatoren,Ann. Univ. Sci. Budapest Sect. Math.,18(1975), 189–195. · Zbl 0351.42012
[12] F. Schipp andP. Simon, On some (H, L 1)-type maximal inequalities with respect to the Walsh-Paley system,Functions, Series, Operators, Proc. Conf. in Budapest, 1980, North Holland (Amsterdam, 1981), 1039–1045.
[13] F. Schipp, W. R. Wade, P. Simon andJ. Pál,Walsh series: An introduction to dyadic harmonic analysis, Adam Hilger (Bristol-New York, 1990). · Zbl 0727.42017
[14] W. R. Wade, A growth estimate for Cesàro partial sums of multiple Walsh-Fourier series,Alfred Haar Memorial Conference, Budapest, 1985, North Holland (Amsterdam, 1986), 975–991.
[15] F. Weisz,Martingale Hardy spaces and their applications in Fourier analysis, Springer (Berlin-Heidelberg-New York, 1994). · Zbl 0796.60049
[16] F. Weisz, Strong summability of two-dimensional Walsh-Fourier series,Acta Sci. Math. (Szeged),60(1995), 779–803. · Zbl 0836.42016
[17] F.Weisz, Cesàro summability of one- and two-dimensional trigonometric Fourier series,Proc. Amer. Math. Soc., (to appear). · Zbl 0891.42006
[18] F.Weisz, Hardy spaces and Cesàro means of two-dimensional Fourier series,Approximation Theory and Function Series, Proc. Conf. in Budapest, 1995, (to appear).
[19] A. Zygmund,Trigonometric series, University Press (Cambridge, 1959). · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.