×

zbMATH — the first resource for mathematics

Bottleneck phenomenon in developed turbulence. (English) Zbl 0865.76030
For an energy cascade in incompressible fluid, the dimensional analysis gives the energy spectrum in the form \(E(k)=\varepsilon^{2/3}k^{-5/3}f(k/k_p)\), where \(\varepsilon\) is the energy dissipation rate, \(k_p\) is the cutoff wave number proportional to the dissipation wave number \(k_d=\varepsilon^{1/4}\nu^{-3/4}\), \(\nu\) is the viscosity of the fluid, and \(f(k/k_p)\) is a function which is to be determined experimentally or theoretically. Many authors assumed that the function \(f\) decreases monotonically with \(k\). The author shows in the paper that this is not the reality. In particular, this fact is obvious in the bottleneck phenomenon in acoustic turbulence described by the author et al. in a paper quoted in the bibliography. Finally, different examples of both wave turbulence and vortex turbulence in incompressible fluid are considered.

MSC:
76F99 Turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kolmogorov A. N., Dokl. Akad. Nauk SSSR 30 pp 229– (1941)
[2] DOI: 10.1017/S0022112059000362 · Zbl 0093.41202 · doi:10.1017/S0022112059000362
[3] DOI: 10.1063/1.858591 · doi:10.1063/1.858591
[4] Falkovich G., Sov. Phys. JETP 71 pp 1085– (1990)
[5] Saffman P. G., Appl. Sci. Res. A 11 pp 245– (1962)
[6] DOI: 10.1016/0167-2789(81)90074-9 · doi:10.1016/0167-2789(81)90074-9
[7] DOI: 10.1103/PhysRevA.46.4762 · doi:10.1103/PhysRevA.46.4762
[8] DOI: 10.1103/PhysRevLett.70.3251 · doi:10.1103/PhysRevLett.70.3251
[9] DOI: 10.1063/1.864902 · Zbl 0573.76048 · doi:10.1063/1.864902
[10] DOI: 10.1063/1.1761928 · Zbl 0147.46004 · doi:10.1063/1.1761928
[11] DOI: 10.1017/S0022112077001979 · Zbl 0369.76054 · doi:10.1017/S0022112077001979
[12] DOI: 10.1017/S0022112082002560 · Zbl 0504.76059 · doi:10.1017/S0022112082002560
[13] DOI: 10.1016/0169-5983(91)90028-H · doi:10.1016/0169-5983(91)90028-H
[14] DOI: 10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2 · doi:10.1175/1520-0469(1976)033<1521:EVITAT>2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.