zbMATH — the first resource for mathematics

Robot robust path tracking. (English) Zbl 0864.93078
Summary: A new discontinuous robust control law for a rigid manipulator with bounded parameter uncertainties to track a desired trajectory, is presented. Global exponential stability is proved by the use of a natural Lyapunov function based on a transformation of the manipulator’s differential equation due to J. J. E. Slotine and W. Li [“On the adaptive control of robot manipulators”, Int. J. of Robotics Research 6, 49-59 (1987)]. Convergence is to a sliding mode along which the tracking error is reduced at an arbitrary exponential rate. It is also shown how adaptation of bounds on uncertainties, and parameter adaptation, can be incorporated. For a continuous approximation of the discontinuous control law, practical stability (essentially, global uniform ultimate boundedness) of the tracking error is proved. Simulation results for the continuous control law exhibit excellent robust tracking.
93C85 Automated systems (robots, etc.) in control theory
93B12 Variable structure systems
Full Text: DOI
[1] Abdallah, C., Dawson D., Dorato P., and Jamshidi M., ”Techniques for the robust control of rigid robots,” inControl and Dynamic Systems, vol. 53, pp. 387–426, 1992. · Zbl 0800.93821
[2] Slotine, J. J. E. and Li, W., ”On the adaptive control of robot manipulators,”Int. J. of Robotics Research, vol. 6, pp. 49–59, 1987.
[3] Gutman, S., ”Synthesis of min-max strategies,”JOTA, vol. 46, pp. 515–523, 1985. · Zbl 0548.93033
[4] Utkin V. I., ”Variable structure systems with sliding modes,”IEEE Trans. on Automatic Control, vol. AC-22, pp. 212–222, 1977. · Zbl 0382.93036
[5] De Carlo, R. A., Zak S. H., and Mathews G. P., ”Variable structure control of nonlinear multivariable systems: A tutorial,”Proc. IEEE, vol. 76, pp. 212–232, 1988.
[6] Corless, M. J. and Leitmann, G., ”Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,”IEEE Trans. Automatic Control, vol. AC-26, pp. 1139–1144, 1981. · Zbl 0473.93056
[7] Spong, M. W. and Vidyasagar, M.,Robot Dynamics and Control, John Wiley & Sons Inc., 1989.
[8] Ortega, R. and Spong, M. W., ”Adaptive motion control of rigid robots: A tutorial,”Automatica, vol. 25, pp. 877–888, 1989. · Zbl 0695.93064
[9] Middleton, R. H., ”Hybrid adaptive control for robot manipulators,”Proceedings of the 27th Conference on Decision and Control, 1988.
[10] Chen, Y. H. and Leitmann, G., ”Robustness of uncertain systems in the absence of matching conditions,”Int. J. Control, vol. 45, pp. 1527–1542, 1987. · Zbl 0623.93023
[11] Corless, M. and Leitmann, G., ”Deterministic control of uncertain systems: A Lyapunov theory approach,” Ch. 11 inDeterministic Control of Uncertain Systems, A. S. I. Zinober, ed., Peter Pevegrinus Ltd., London, 1990(IEE Control Eng. Series # 40). · Zbl 0667.93060
[12] Yoo, D. S. and Chung, M. J., ”A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties,”IEEE Trans. on Aut. Control, vol. 37, pp. 860–864, 1992. · Zbl 0760.93014
[13] Najson, F. and Kreindler, E., ”Tracking control of rigid manipulators: A Lyapunov approach,” Dept. of Elec. Eng., Technion-Israel Institute of Technology, EE Pub. No. 817, January 1992. · Zbl 0853.93092
[14] Najson, F. and Kreindler, E., ”On compensation for neglected actuator dynamics,”Automatica, vol. 30, pp. 1501–1502, 1994. · Zbl 0925.93379
[15] Aubin, J. P. and Cellina, A., ”Differential Inclusions,” Springer-Verlag, Berlin, 1984. · Zbl 0538.34007
[16] Ryan, E. P., ”Subspace attractivity and invariance: Ultimate attainment of prescribed dynamic behaviour,” Ch. 4 inDeterministic Control of Uncertain Systems, A. S. I. Zinober, ed., Peter Pevegrinus Ltd., London, 1990 (IEE Control Eng. Series # 40).
[17] Najson, F., ”A Lyapunov Approach to Robust Stability of Nonlinear Systems: Applications to Manipulators,” MSc Thesis, Dept. of Elec. Eng., Technion-Israel Institute of Technology, April 1992.
[18] Dawson, D. M., Qu, Z., Lewis, F. L. and Dorsey, V. F., ”Robust control for the tracking of robot motion,”Int. J. Control vol. 52, No. 3, pp. 581–595, 1990. · Zbl 0708.93057
[19] Wijesoma, S. W. and Richards, R. J., ”Robust trajectory following of robots using computed torque structure with VSS,”Int. J. Control, vol. 52, pp. 935–962, 1990. · Zbl 0706.70033
[20] Dolphus, R. M. and Schmitendorf, W. E., ”Robot trajectory control: Robust outer loop design,”Dyn. and Control, vol. 1, pp. 109–126, 1991. · Zbl 0742.93056
[21] Slotine, J. J., E. and Li, W.,Applied Nonlinear Control, Prentice-Hall Inc., pp. 398–403, 1991.
[22] Wen, J. T., Kreutz-Delgado, K. and Bayard, D. S., ”Lyapunov function-based control laws for revolute robot arms: Tracking control, robustness, and adaptive control,”IEEE Trans. on Automatic Control, vol. AC-37, pp. 231–237, February 1992. · Zbl 0766.93059
[23] Zhu, W. H., Chen, H. T., and Zhang, Z. J., ”A variable structure robot control algorithm with an observer,”IEEE Trans. on Robotics and Automation, vol. 8, pp. 486–492, 1992.
[24] Sotirov, Z., ”A nonlinear robust controller for robot manipulators,”Proc. of the 1992 IEEE Int. Conf. on Robotics and Automation, Nice, France, pp. 2134–2139, May 1992.
[25] Chang, T. H. and Hurmuzlu, Y., ”Trajectory tracking in robotic systems using variable structure control without a reaching phase,”Proc. 1992 ACC, pp. 1505–1509.
[26] Tianpei, L., Qijie, Z. and Chunyi, S., ”The variable-structure control of robot manipulators with adaptive feed forward compensation and its implementation,”Chinese J. of Automation, vol. 3, pp. 322–327, 1991. · Zbl 0734.70004
[27] Spong, M. W., ”On the robust control of robot manipulators,”IEEE Trans. on Automatic Control, vol. 37, pp. 1782–1786, Nov. 1992. · Zbl 0778.93082
[28] LaSalle, J. and Lefschetz, S., ”Stability by Liapunov’s direct method, with applications,” Academic Press, 1961. · Zbl 0098.06102
[29] Lakshmikantham, V., Leela, S. and Martynyuk, A. A., ”Practical Stability of Nonlinear Systems,” World Scientific Publishing Co., 1990. · Zbl 0753.34037
[30] Chen, Y H. and Chen, J. S., ”Adaptive robust control of uncertain systems,” in ”Control and Dynamic Systems,” Ed. Leondes, C. T., Academic Press, Inc. vol. 50, 1992. · Zbl 0791.93031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.